A059955 a(n) = floor( prime(n)!/lcm(1..prime(n)) ) modulo prime(n).
1, 2, 5, 10, 3, 10, 4, 3, 28, 17, 18, 30, 20, 41, 42, 14, 19, 30, 37, 63, 50, 7, 12, 83, 30, 91, 19, 69, 91, 97, 56, 22, 80, 39, 137, 44, 9, 154, 19, 37, 141, 141, 168, 126, 183, 200, 205, 136, 55, 95, 204, 126, 213, 230, 68, 63, 158, 202, 162, 102, 182, 104, 38, 165
Offset: 2
Keywords
Examples
a(2)=1 because prime(2)=3 and floor(3!/lcm(1,2,3)) mod 3 = 1 mod 3 = 1; a(3)=2 because prime(3)=5 and floor(5!/lcm(1,2,3,4,5)) mod 5 = 2 mod 5 = 2; a(4)=5 because prime(4)=7 and floor(7!/lcm(1,2,3,4,5,6,7)) mod 7 = 12 mod 7 = 5; a(7)=10 because prime(7)=17 and floor(17!/lcm(1,2,...,17)) mod 17 = 29030400 mod 17 = 10.
Programs
-
Magma
[Floor( Factorial(p)/Lcm([1..p]) ) mod p: p in PrimesInInterval(3,400)]; // Bruno Berselli, Feb 08 2015
-
Maple
for n from 2 to 150 do printf(`%d,`, floor(ithprime(n)!/ilcm(i $ i=1..ithprime(n))) mod ithprime(n) ); od:
Extensions
More terms from James Sellers, Mar 15 2001
Comments