cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064276 Number of 2 X 2 singular integer matrices with elements from {0,...,n} up to row and column permutation.

Original entry on oeis.org

1, 5, 13, 25, 42, 62, 90, 118, 155, 195, 243, 287, 352, 404, 472, 548, 629, 697, 797, 873, 986, 1094, 1202, 1294, 1443, 1559, 1687, 1823, 1984, 2100, 2296, 2420, 2597, 2769, 2937, 3125, 3366, 3514, 3702, 3906, 4167, 4331, 4611, 4783, 5040, 5320, 5548
Offset: 0

Views

Author

Vladeta Jovovic, Sep 24 2001

Keywords

Examples

			There are 5 binary singular matrices up to row and column permutation:
[0 0] [1 0] [1 1] [1 0] [1 1]
[0 0] [0 0] [0 0] [1 0] [1 1].
		

Crossrefs

Formula

a(n) = (A059306(n)+(n+1)*(2*n+3))/4.

Extensions

More terms from David Wasserman, Jul 16 2002

A064368 Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.

Original entry on oeis.org

1, 4, 7, 10, 15, 18, 21, 24, 29, 36, 39, 42, 47, 50, 53, 56, 65, 68, 75, 78, 83, 86, 89, 92, 97, 108, 111, 118, 123, 126, 129, 132, 141, 144, 147, 150, 163, 166, 169, 172, 177, 180, 183, 186, 191, 198, 201, 204, 213, 228, 239, 242, 247, 250, 257, 260, 265, 268
Offset: 0

Views

Author

Vladeta Jovovic, Sep 27 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* Amiram Eldar, Nov 07 2024 *)
  • PARI
    a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010.
a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 07 2024

A277636 Number of 3 X 3 matrices having all elements in {0,...,n} with determinant = permanent.

Original entry on oeis.org

1, 343, 6859, 50653, 226981, 753571, 2048383, 4826809, 10218313, 19902511, 36264691, 62570773, 103161709, 163667323, 251239591, 374805361, 545338513, 776151559, 1083206683, 1485446221, 2005142581, 2668267603, 3504881359, 4549540393, 5841725401, 7426288351
Offset: 0

Views

Author

Indranil Ghosh, Jan 02 2017

Keywords

Comments

a(n) is a perfect cube.

Crossrefs

Cf. A059976 (Number of 3 X 3 singular matrices with all elements in {0,...,n})
Cf. A015237 (Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent )
Cf. A003215.

Programs

  • PARI
    Vec((1 + 336*x + 4479*x^2 + 9808*x^3 + 4479*x^4 + 336*x^5 + x^6) / (1 - x)^7 + O(x^30)) \\ Colin Barker, Jan 02 2017
  • Python
    def a(n):
        return 27*n**6-81*n**5+108*n**4-81*n**3+36*n**2-9*n+1
    

Formula

a(n) = A003215(n-1)^3.
a(n) = (3*n^2 - 3*n + 1)^3.
G.f.: (1 + 336*x + 4479*x^2 + 9808*x^3 + 4479*x^4 + 336*x^5 + x^6) / (1 - x)^7. - Colin Barker, Jan 02 2017

A064363 Number of 2 X 2 regular integer matrices with elements from {0,...,n} up to row and column permutation.

Original entry on oeis.org

0, 2, 14, 51, 133, 289, 547, 954, 1546, 2380, 3508, 5005, 6915, 9347, 12353, 16028, 20468, 25790, 32054, 39427, 47965, 57833, 69155, 82082, 96682, 113192, 131720, 152429, 175467, 201075, 229305, 260492, 294700, 332182, 373138, 417751, 466201
Offset: 0

Views

Author

Vladeta Jovovic, Sep 25 2001

Keywords

Examples

			There are 2 binary regular matrices up to row and column permutation:
[1 0] [1 1]
[0 1] [1 0].
		

Crossrefs

Programs

  • Mathematica
    A059306[0] = 1; A059306[n_] := Table[{w, x, y, z} /. {ToRules[ Reduce[0 <= x <= n && 0 <= y <= n && 0 <= z <= n && w*z - x*y == 0, {x, y, z}, Integers]]}, {w, 0, n}] // Flatten[#, 1] & // Length; a[n_] := ((n + 1)*(n^3 + 3*n^2 + 4*n + 1) - A059306[n])/4; Table[Print[an = a[n]]; an, {n, 0, 36}] (* Jean-François Alcover, Nov 26 2013 *)

Formula

a(n) = ((n+1)*(n^3+3*n^2+4*n+1)-A059306(n))/4.
Showing 1-4 of 4 results.