cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060008 a(n) = 9*binomial(n,4) = 3n*(n-1)*(n-2)*(n-3)/8.

Original entry on oeis.org

0, 0, 0, 0, 9, 45, 135, 315, 630, 1134, 1890, 2970, 4455, 6435, 9009, 12285, 16380, 21420, 27540, 34884, 43605, 53865, 65835, 79695, 95634, 113850, 134550, 157950, 184275, 213759, 246645, 283185, 323640, 368280, 417384, 471240, 530145, 594405
Offset: 0

Views

Author

Henry Bottomley, Mar 16 2001

Keywords

Comments

Number of permutations of n letters where exactly four change position.

Examples

			a(6) = 135 since there are 15 ways to choose the four points that move and 9 ways to move them and 15*9 = 135.
		

Crossrefs

For changing 0, 1, 2, 3, 4, 5, n-4, n elements see A000012, A000004, A000217 (offset), A007290, A060008, A060836, A000475, A000166. Also see A000332, A008290.
A diagonal of A008291.

Programs

  • Mathematica
    9*Binomial[Range[0,40],4] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,0,0,9},40] (* Harvey P. Dale, Jun 09 2014 *)
  • PARI
    a(n) = { 3*n*(n - 1)*(n - 2)*(n - 3)/8 } \\ Harry J. Smith, Jul 01 2009

Formula

Equals 3*A050534. - Zerinvary Lajos, Feb 12 2007
G.f.: 9*x^4/(1-x)^5. - Colin Barker, Jul 02 2012
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 4/27.
Sum_{n>=4} (-1)^n/a(n) = 32*log(2)/9 - 64/27. (End)