A060043 Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.
1, 3, 1, 4, 3, 7, 9, 6, 1, 15, 12, 3, 30, 8, 9, 45, 15, 22, 67, 13, 1, 42, 99, 18, 3, 81, 135, 12, 9, 140, 175, 28, 22, 231, 231, 14, 51, 351, 306, 24, 1, 97, 551, 354, 24, 3, 188, 783, 465, 31, 9, 330, 1134, 540, 18, 22, 568, 1546, 681, 39, 51, 918, 2142, 765, 20
Offset: 1
Examples
Triangle turned on its side begins: 1 3 4 7 6 12 8 15 13 18 ... 1 3 9 15 30 45 67 99 ... 1 3 9 22 42 ... 1 ... For example, T(6,2) = 15.
Links
- Alois P. Heinz, Rows n = 1..1000, flattened
- G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i))) end: T:= n-> (p-> seq(coeff(p, x, degree(p)-i), i=0..degree(p)-1))(b(n$2)): seq(T(n), n=1..20); # Alois P. Heinz, Jul 21 2025
-
Mathematica
Clear[diag, m]; nmax = 19; kmax = Floor[(Sqrt[8*nmax+1]-1)/2]; m[0] = 0; diag[k_] := diag[k] = Sum[q^(Sum[m[i], {i, 1, k}])/(Times @@ (1 - q^Array[m, k]))^2, Sequence @@ Table[{m[j], m[j-1]+1, nmax}, {j, 1, k}] // Evaluate] + O[q]^(nmax+1) // CoefficientList[#, q]&; Table[ Select[ Table[diag[k][[j+1]], {k, 1, kmax}], IntegerQ[#] && # > 0&] // Reverse, {j, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)
Formula
T(n, 1) = sum of divisors of n (A000203), T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*m_1 + s_2*m_2 + ... + s_k*m_k = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/(2*k+1)) * ( Sum_{j>=k} (-1)^j * (2*j+1) * binomial(j+k,2*k) * q^(j*(j+1)/2) ) / ( Sum_{j>=0} (-1)^j * (2*j+1) * q^(j*(j+1)/2) ). - Seiichi Manyama, Sep 15 2023
Extensions
More terms from Naohiro Nomoto, Jan 24 2002
Comments