A060054 Numerators of numbers appearing in the Euler-Maclaurin summation formula.
-1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..600
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
- Zhanna Kuznetsova and Francesco Toppan, Classification of minimal Z_2 X Z_2-graded Lie (super)algebras and some applications, arXiv:2103.04385 [math-ph], 2021.
Crossrefs
Programs
-
Haskell
a060054 n = a060054_list !! n a060054_list = -1 : map (numerator . sum) (tail $ zipWith (zipWith (%)) (zipWith (map . (*)) a000142_list a242179_tabf) a106831_tabf) -- Reinhard Zumkeller, Jul 04 2014
-
Mathematica
a[m_] := Sum[(-2)^(-k-1) k! StirlingS2[m,k],{k,0,m}]/(2^(m+1)-1); Table[Numerator[a[i]], {i,0,30}] (* Peter Luschny, Apr 29 2009 *)
-
Maxima
a(n):=num((-1)^n*sum(binomial(n+k-1,n-1)*sum((j!*(-1)^(j)*binomial(k,j)*stirling1(n+j,j))/(n+j)!,j,1,k),k,1,n)); /* Vladimir Kruchinin, Feb 03 2013 */
Comments