cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060091 Number of 4-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 16, 63, 162, 341, 636, 1092, 1764, 2718, 4032, 5797, 8118, 11115, 14924, 19698, 25608, 32844, 41616, 52155, 64714, 79569, 97020, 117392, 141036, 168330, 199680, 235521, 276318, 322567, 374796, 433566, 499472, 573144, 655248, 746487
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=4 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1).
G.f.: - y^3*( - 24*y^2 - 16 + 33*y + 6*y^3)/( - 1 + y)^6.
E.g.f. for ordered k-block bicoverings of an unlabeled n-set is: exp( - x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n+5)*(n-1)*(n-2)*(n^2+13*n+72)/120, n>0. - R. J. Mathar, Aug 15 2017