cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060175 Square array A(n,k) = exponent of the largest power of k-th prime which divides n, read by falling antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Mar 14 2001

Keywords

Examples

			a(12,1) = 2 since 4 = 2^2 = p_1^2 divides 12 but 8 = 2^3 does not.
a(12,2) = 1 since 3 = p_2 divides 12 but 9 = 3^2 does not.
See also examples in A249344, which is transpose of this array.
The top-left corner of the array:
n\k | 1  2  3  4  5  6  7  8
----+------------------------
1   | 0, 0, 0, 0, 0, 0, 0, 0,
2   | 1, 0, 0, 0, 0, 0, 0, 0,
3   | 0, 1, 0, 0, 0, 0, 0, 0,
4   | 2, 0, 0, 0, 0, 0, 0, 0,
5   | 0, 0, 1, 0, 0, 0, 0, 0,
6   | 1, 1, 0, 0, 0, 0, 0, 0,
7   | 0, 0, 0, 1, 0, 0, 0, 0,
8   | 3, 0, 0, 0, 0, 0, 0, 0,
9   | 0, 2, 0, 0, 0, 0, 0, 0,
10  | 1, 0, 1, 0, 0, 0, 0, 0,
11  | 0, 0, 0, 0, 1, 0, 0, 0,
12  | 2, 1, 0, 0, 0, 0, 0, 0,
...
		

Crossrefs

Transpose: A249344.
Column 1: A007814.
Column 2: A007949.
Column 3: A112765.
Column 4: A214411.
Row sums: A001222.

Programs

  • Mathematica
    T[n_, k_] := IntegerExponent[n, Prime[k]];
    Table[T[n-k+1, k], {n, 1, 15}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 18 2019 *)
  • PARI
    a(n, k) = valuation(n, prime(k)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A060175 n) (A249344bi (A004736 n) (A002260 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

A(n, k) = log(A060176(n, k))/log(A000040(k)) = k-th digit from right of A054841(n).

Extensions

Erroneous example corrected and more terms computed by Antti Karttunen, Oct 28 2014
Name clarified by Antti Karttunen, Jan 16 2025