A060175 Square array A(n,k) = exponent of the largest power of k-th prime which divides n, read by falling antidiagonals.
0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1
Examples
a(12,1) = 2 since 4 = 2^2 = p_1^2 divides 12 but 8 = 2^3 does not. a(12,2) = 1 since 3 = p_2 divides 12 but 9 = 3^2 does not. See also examples in A249344, which is transpose of this array. The top-left corner of the array: n\k | 1 2 3 4 5 6 7 8 ----+------------------------ 1 | 0, 0, 0, 0, 0, 0, 0, 0, 2 | 1, 0, 0, 0, 0, 0, 0, 0, 3 | 0, 1, 0, 0, 0, 0, 0, 0, 4 | 2, 0, 0, 0, 0, 0, 0, 0, 5 | 0, 0, 1, 0, 0, 0, 0, 0, 6 | 1, 1, 0, 0, 0, 0, 0, 0, 7 | 0, 0, 0, 1, 0, 0, 0, 0, 8 | 3, 0, 0, 0, 0, 0, 0, 0, 9 | 0, 2, 0, 0, 0, 0, 0, 0, 10 | 1, 0, 1, 0, 0, 0, 0, 0, 11 | 0, 0, 0, 0, 1, 0, 0, 0, 12 | 2, 1, 0, 0, 0, 0, 0, 0, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..22155; the first 210 antidiagonals
Crossrefs
Programs
-
Mathematica
T[n_, k_] := IntegerExponent[n, Prime[k]]; Table[T[n-k+1, k], {n, 1, 15}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 18 2019 *)
-
PARI
a(n, k) = valuation(n, prime(k)); \\ Michel Marcus, Jun 24 2017
-
Python
from sympy import prime def a(n, k): p=prime(n) i=z=0 while p**i<=k: if k%(p**i)==0: z=i i+=1 return z for n in range(1, 10): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
-
Scheme
(define (A060175 n) (A249344bi (A004736 n) (A002260 n))) (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1))))))) ;; Antti Karttunen, Oct 28 2014
Extensions
Erroneous example corrected and more terms computed by Antti Karttunen, Oct 28 2014
Name clarified by Antti Karttunen, Jan 16 2025