cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060179 Sum of distinct orders of degree-n permutations.

Original entry on oeis.org

1, 1, 3, 6, 10, 21, 21, 50, 73, 116, 167, 248, 385, 496, 728, 959, 1548, 1899, 2835, 3609, 5042, 6403, 8336, 12187, 15522, 21358, 26090, 35298, 44147, 62512, 76289, 101403, 123883, 156880, 200086, 254175, 335380, 413184, 505860, 615258, 810767, 980747, 1293953
Offset: 0

Views

Author

Vladeta Jovovic, Mar 19 2001

Keywords

Examples

			Set of orders of all degree 7 permutations is {1,2,3,4,5,6,7,10,12} so a(7)=1+2+3+4+5+6+7+10+12=50.
		

Crossrefs

Cf. A009490.
Row sums of A256553.

Programs

  • Maple
    b:= proc(n, i) option remember; (p->`if`(i*n=0, 1,
           add(b(n-p^j, i-1)*p^j, j=1..ilog[p](n))+
             b(n, i-1)))(`if`(i=0, 0, ithprime(i)))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 12 2017
  • Mathematica
    b[n_, i_] := b[n, i] = Function [p, If[i*n == 0, 1, Sum[b[n-p^j, i-1]*p^j, {j, 1, Floor@Log[p, n]}] + b[n, i-1]]][If[i == 0, 0, Prime[i]]];
    a[n_] := b[n, PrimePi[n]];
    a /@ Range[0, 50] (* Jean-François Alcover, Mar 14 2021, after Alois P. Heinz *)

Formula

G.f.: Prod(p prime, 1 + Sum(k >= 1, p^k*x^(p^k))) / (1-x). - Vladeta Jovovic, Sep 18 2002

Extensions

More terms from David Wasserman, May 29 2002
a(0)=1 prepended by Alois P. Heinz, Apr 01 2015