cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060170 Number of orbits of length n under the map whose periodic points are counted by A005809.

Original entry on oeis.org

3, 6, 27, 120, 600, 3078, 16611, 91872, 520749, 3004200, 17594247, 104304888, 624801957, 3775722342, 22991161500, 140928011136, 868886416866, 5384796881850, 33525472069563, 209592223788000, 1315211209630794, 8281053081282894, 52301607644921259, 331260902534858976, 2103541885645955625, 13389670112374830378
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A005809 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
a(n) is divisible by n (cf. A268617), 2*a(n) is divisible by n^2 (cf. A268618).

Examples

			a(3) = 27 since a map whose periodic points are counted by A005809 has 3 fixed points and 84 points of period 3, hence 27 orbits of length 3.
		

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d))/n; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = (1/n)* Sum_{d|n} A008683(n/d)*A005809(d).

Extensions

Edited by Max Alekseyev, Feb 09 2016

A256553 Triangle T(n,k) in which the n-th row contains the increasing list of distinct orders of degree-n permutations; n>=0, 1<=k<=A009490(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 10, 12, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 30
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2015

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 2;
  1, 2, 3;
  1, 2, 3, 4;
  1, 2, 3, 4, 5, 6;
  1, 2, 3, 4, 5, 6;
  1, 2, 3, 4, 5, 6, 7, 10, 12;
  1, 2, 3, 4, 5, 6, 7,  8, 10, 12, 15;
  1, 2, 3, 4, 5, 6, 7,  8,  9, 10, 12, 14, 15, 20;
  1, 2, 3, 4, 5, 6, 7,  8,  9, 10, 12, 14, 15, 20, 21, 30;
		

Crossrefs

Row sums give A060179.
Row lengths give A009490.
Last elements of rows give A000793.
Main diagonal gives A000027.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq((h->`if`(h=0, [][], i))(coeff(p, x, i))
         , i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x,
         b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i],
         {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]];
    T[n_] := Function[p, Table[Function[h, If[h == 0, Nothing, i]][
         Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)

Formula

Sum_{k>=0} T(n,k)*A256554(n,k) = A181844(n).
T(n,k) = k for n>0 and 1<=k<=n.

A060180 Sum of distinct orders of degree-n even permutations.

Original entry on oeis.org

1, 1, 4, 6, 11, 15, 28, 43, 74, 103, 148, 213, 296, 476, 679, 990, 1133, 1707, 2225, 3260, 4591, 6042, 7343, 9374, 13774, 18262, 25244, 30379, 39768, 47295, 66471, 87903, 115570, 139802, 173605, 215878, 271434, 369256, 466904, 569623, 664775
Offset: 1

Views

Author

Vladeta Jovovic, Mar 19 2001

Keywords

Examples

			Set of orders of all degree 5 even permutations is {1,2,3,5} so a(5)=1+2+3+5=11.
		

Crossrefs

Extensions

More terms from David Wasserman, May 29 2002
Showing 1-3 of 3 results.