A060211 Larger term of a pair of twin primes such that the prime factors of their average are only 2 and 3. Proper subset of A058383.
7, 13, 19, 73, 109, 193, 433, 1153, 2593, 139969, 472393, 786433, 995329, 57395629, 63700993, 169869313, 4076863489, 10871635969, 2348273369089, 56358560858113, 79164837199873, 84537841287169, 150289495621633, 578415690713089, 1141260857376769, 57711166318706689
Offset: 1
Keywords
Examples
a(4) = 73, {71,73} are twin primes and (71 + 73)/2 = 72 = 2*2*2*3*3.
Links
- Ray Chandler, Table of n, a(n) for n = 1..61 (terms < 10^1000)
- Harsh Aggarwal, Table of n, a(n) for n = 62..91 (terms from 10^1000 to 10^20000)
Programs
-
Mathematica
Take[Select[Sort[Flatten[Table[2^a 3^b,{a,250},{b,250}]]],AllTrue[#+{1,-1},PrimeQ]&]+1,23] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2019 *)
-
PARI
isok(p) = isprime(p) && isprime(p-2) && (vecmax(factor(p-1)[,1]) == 3); \\ Michel Marcus, Sep 05 2017
Formula
a(n) = A027856(n+1) + 1. - Amiram Eldar, Mar 17 2025
Extensions
Name corrected by Sean A. Irvine, Oct 31 2022
Comments