cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060216 Number of orbits of length n under the full 13-shift (whose periodic points are counted by A001022).

Original entry on oeis.org

13, 78, 728, 7098, 74256, 804076, 8964072, 101962770, 1178277464, 13785812040, 162923672184, 1941506688940, 23298085122480, 281241165925044, 3412392867581152, 41588538022965570
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of monic irreducible polynomials of degree n over GF(13). - Robert Israel, Jan 07 2015
Number of Lyndon words (aperiodic necklaces) with n beads of 13 colors. - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=78 since there are 169 points of period 2 in the full 13-shift and 13 fixed points, so there must be (169-13)/2 = 78 orbits of length 2.
		

Crossrefs

Column 13 of A074650.
Cf. A001022.

Programs

  • Maple
    f:= n -> add(numtheory:-mobius(d)*13^(n/d),d=numtheory:-divisors(n))/n;
    seq(f(n), n=1..100); # Robert Israel, Jan 07 2015
  • Mathematica
    a[n_]:=(1/n) * Sum[MoebiusMu[d] *13^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 20}] (* Indranil Ghosh, Mar 26 2017 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*13^(n/d))/n; \\ Michel Marcus, Jan 07 2015
    
  • Python
    from sympy import divisors, mobius
    print([sum(mobius(d) * 13**(n//d) for d in divisors(n))//n for n in range(1, 21)]) # Indranil Ghosh, Mar 26 2017

Formula

a(n) = (1/n)* Sum_{d|n} mu(d) 13^(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 13*x^k))/k. - Ilya Gutkovskiy, May 19 2019