cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060256 Smallest multiple a(n) of n-th primorial q(n) such that a(n)*q(n)-1 and a(n)*q(n)+1 are a pair of twin primes.

Original entry on oeis.org

2, 1, 1, 2, 1, 6, 8, 11, 4, 16, 22, 4, 74, 24, 37, 28, 14, 11, 242, 11, 91, 20, 83, 91, 35, 80, 48, 47, 226, 2, 12, 203, 30, 38, 356, 54, 266, 108, 305, 227, 173, 1185, 738, 13, 382, 277, 455, 433, 173, 1303, 926, 1162, 164, 298, 69, 121, 702, 1670, 36, 570, 170, 204
Offset: 1

Views

Author

Labos Elemer, Mar 22 2001

Keywords

Examples

			30030*j-1 or 30030*j+1 are not both primes for j=1,2,3,4,5. But for j=6 {180179,180181} are twin primes. So a(6)=6.
		

Crossrefs

Programs

  • Mathematica
    smp[n_]:=Module[{k=1},While[!PrimeQ[k*n+1]||!PrimeQ[k*n-1],k++];k]; Table[ smp[n],{n,FoldList[Times,Prime[Range[70]]]}] (* Harvey P. Dale, Oct 27 2016 *)
  • PARI
    a(n)=p=vecprod(primes(n));for(k=1,+oo,ispseudoprime(k*p+1)&&ispseudoprime(k*p-1)&&return(k)) \\ Jeppe Stig Nielsen, Nov 09 2024

Extensions

Corrected and extended by Ray Chandler, Apr 03 2009

A060255 Smaller of twin primes {p, p+2} whose average p+1 = k*q is the least multiple of the n-th primorial number q such that k*q-1 and k*q+1 are twin primes.

Original entry on oeis.org

3, 5, 29, 419, 2309, 180179, 4084079, 106696589, 892371479, 103515091679, 4412330782859, 29682952539239, 22514519501013539, 313986271960080719, 22750921955774182169, 912496437361321252439, 26918644902158976946979, 1290172194953476680815969, 1901713815361424627522739779
Offset: 1

Views

Author

Labos Elemer, Mar 22 2001

Keywords

Comments

a(349) has 1001 digits. - Michael S. Branicky, Apr 19 2025

Examples

			a(13) = -1 + (2*3*5*7*...*41)*k(13) = 304250263527210*74 and {22514519501013539, 22514519501013542} are the corresponding primes; k(13)=74 is the smallest suitable multiplier. Twin primes obtained from primorial numbers with k=1 multiplier seem to be much rarer (see A057706).
For j=1,2,3,4,5,6, a(j)=A001359(1), A059960(1), A060229(1), A060230(1), A060231(1), A060232(1) respectively.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(q = prod(k=1, n, prime(k))); for(k=1, oo, if (isprime(q*k-1) && isprime(q*k+1), return(q*k-1)););} \\ Michel Marcus, Jul 10 2018
    
  • Python
    from itertools import count
    from sympy import primorial, isprime
    def a(n):
        p = primorial(n)
        return next(m-1 for m in count(p, p) if isprime(m-1) and isprime(m+1))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Apr 18 2025

Formula

a(n) = p = k(n)*q(n)-1, where q(n)=A002110(n) and k(n)=A060256(n) is the smallest integer whose multiplication by the n-th primorial yields p+1.

Extensions

a(2)=5 corrected by Ray Chandler, Apr 03 2009
a(18) and beyond from Michael S. Branicky, Apr 18 2025
Showing 1-2 of 2 results.