cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060240 Triangle T(n,k) in which n-th row gives degrees of irreducible representations of symmetric group S_n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 4, 5, 5, 6, 1, 1, 5, 5, 5, 5, 9, 9, 10, 10, 16, 1, 1, 6, 6, 14, 14, 14, 14, 15, 15, 20, 21, 21, 35, 35, 1, 1, 7, 7, 14, 14, 20, 20, 21, 21, 28, 28, 35, 35, 42, 56, 56, 64, 64, 70, 70, 90, 1, 1, 8, 8, 27, 27, 28, 28, 42, 42, 42, 48, 48, 56, 56, 70, 84
Offset: 0

Views

Author

N. J. A. Sloane, Mar 21 2001

Keywords

Comments

Sum_{k>=1} T(n,k)^2 = n!. - R. J. Mathar, May 09 2013
From Emeric Deutsch, Oct 31 2014: (Start)
Number of entries in row n = A000041(n) = number of partitions of n.
Sum of entries in row n = A000085(n).
Largest (= last) entry in row n = A003040(n).
The entries in row n give the number of standard Young tableaux of the Ferrers diagrams of the partitions of n (nondecreasingly). (End)

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 1, 2;
  1, 1, 2, 3, 3;
  1, 1, 4, 4, 5, 5, 6;
  ...
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.
  • B. E. Sagan, The Symmetric Group, 2nd ed., Springer, 2001, New York.

Crossrefs

Rows give A003870, A003871, etc. Cf. A060241, A060246, A060247.
Maximal entry in each row gives A003040.

Programs

  • Magma
    CharacterTable(SymmetricGroup(6)); // (say)
  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
                     seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    T:= n-> sort([g(n, n, [])])[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Jan 07 2013
  • Mathematica
    h[l_List] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, Flatten @ Table[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    T[n_] := Sort[g[n, n, {}]]; T[1] = {1};
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)

Extensions

More terms from Vladeta Jovovic, May 20 2003