A153734
Triangle T(n,k): T(n,k) gives the A153452(m_k) such that A056239(m_k) = n, [1<=k<=A000041(n)], sorted by m_k, read by rows. Sequence A060240 is this sequence's permutation.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 5, 5, 6, 4, 1, 1, 9, 5, 5, 5, 10, 16, 9, 10, 5, 1, 1, 6, 14, 14, 35, 15, 21, 21, 14, 20, 35, 14, 15, 6, 1, 1, 7, 20, 14, 21, 28, 56, 64, 70, 42, 14, 90, 35, 70, 56, 28, 35, 64, 20, 21, 7, 1
Offset: 0
For n=4, A056239(7) = A056239(9) = A056239(10) = A056239(12) = A056239(16) = 4. Hence T(4,k) = A153452(m_k) = (1,2,3,3,1), where 1<=k<=5, m_k = 7,9,10,12,16.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 2, 3, 3, 1;
1, 4, 5, 5, 6, 4, 1;
1, 9, 5, 5, 5, 10, 16, 9, 10, 5, 1;
...
-
with(numtheory):
g:= proc(n) option remember; `if`(n=1, 1,
add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
[seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
end:
T:= n-> map(g, sort(b(n, n)))[]:
seq(T(n), n=0..10); # Alois P. Heinz, Aug 09 2012
-
g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]];
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[Map[ #*Prime[i]^j&, b[n - i*j, i - 1]], {j, 0, n/i}]]];
T[n_] := g /@ Sort[b[n, n]];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 16 2021, after Alois P. Heinz *)
A067924
Triangle read by rows in which the n-th row gives degrees of irreducible representations of symmetric group S_n (cf. A060240) but now rows are sorted as indicated in A059797 with p(n) terms on each row, where p(n) = A000041(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 5, 5, 1, 5, 10, 10, 5, 1, 9, 16, 9, 5, 5, 1, 6, 15, 20, 15, 6, 1, 14, 35, 35, 14, 14, 21, 21, 14, 1, 7, 21, 35, 35, 21, 7, 1, 20, 64, 90, 64, 20, 28, 70, 56, 56, 70, 28, 14, 42, 14
Offset: 1
A059797 begins 2, 5, 5, 9, 16, 9, so row six of this sequence begins 1, 5, 10, 10, 5, 1, 9, 16, 9, ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1, 2;
1, 4, 6, 4, 1, 5, 5;
1, 5, 10, 10, 5, 1, 9, 16, 9, 5, 5;
1, 6, 15, 20, 15, 6, 1, 14, 35, 35, 14, 14, 21, 21, 14;
1, 7, 21, 35, 35, 21, 7, 1, 20, 64, 90, 64, 20, 28, 70, 56, 56, 70, 28, 14, 42, 14;
A117506
Irregular triangle read by rows: dimensions of the irreducible representations of the symmetric group S_n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 5, 6, 5, 4, 1, 1, 5, 9, 5, 10, 16, 5, 10, 9, 5, 1, 1, 6, 14, 14, 15, 35, 21, 21, 20, 35, 14, 15, 14, 6, 1, 1, 7, 20, 28, 14, 21, 64, 70, 56, 42, 35, 90, 56, 70, 14, 35, 64, 28, 21, 20, 7, 1
Offset: 0
[1];
[1];
[1, 1];
[1, 2, 1];
[1, 3, 2, 3, 1];
[1, 4, 5, 6, 5, 4, 1];
[1, 5, 9, 5, 10, 16, 5, 10, 9, 5, 1];...
a(4,4)=3 because the 4th partition of n=4 in A-St order is [2,1,1],
and H(4,4)=(4!*2!*1!)/Vandermonde([4,2,1]) = (4!*2)/6 =4*2, hence
4!/H(4,4) = 3.
a(4,4)=3 because the hook lengths of the Young diagram of [2,1,1] are [4, 1; 2; 1], hence 4!/(4*1*2*1) = 3.
The sum of the squared entries of each row gives n!: n = 5: 2*(1^1 + 4^2 + 5^2) + 6^2 = 120 = 5!. - _Wolfdieter Lang_, Oct 09 2015
- G. de B. Robinson (ed.), The Collected Papers of Alfred Young 1873-1940, University of Toronto Press, 1977.
- G. B. Wybourne, Symmetry principles and atomic spectroscopy, Wiley, New York, 1970, p. 9.
- Alois P. Heinz, Rows n = 0..30, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, pp. 831-2.
- Kenneth Glass and Chi-Keung Ng, A Simple Proof of the Hook Length Formula, Am. Math. Monthly 111 (2004) 700 - 704.
- Graham H. Hawkes, An Elementary Proof of a Formula for SYT, arXiv preprint arXiv:1310.5919 [math.CO], 2013-2014.
- Wolfdieter Lang, First 15 rows.
- Eric Weisstein's World of Mathematics, Hook length formula.
- Doron Zeilberger, Andre's Reflection Proof Generalized to the Many-Candidate Ballot Problem, Discrete Mathematics 44 (1983) 325-326.
- Index entries for sequences related to groups
-
h:= l-> (n-> mul(mul(1+l[i]-j+add(`if`(l[k]>=j, 1, 0),
k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
g:= (n, i, l)-> `if`(n=0 or i=1, [h([l[], 1$n])],
[g(n, i-1, l)[], g(n-i, min(n-i, i), [l[], i])[]]):
T:= n-> map(x-> n!/x, g(n$2, []))[]:
seq(T(n), n=0..10); # Alois P. Heinz, Nov 05 2015
-
h[l_List] := Function[n, Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]]; g[n_, i_, l_List] := If[n==0 || i==1, Join[{h[Join[l, Array[1&, n]]]}], If[i<1, {}, Join[{g[n, i-1, l]}, If[i>n, {}, g[n-i, i, Join[l, {i}]]]]]] // Flatten; T[n_] := n!/ g[n, n, {}]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
A093784
Triangle T(n,k) read by rows in which n-th row gives the hook products of the partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 6, 6, 8, 8, 12, 24, 24, 20, 24, 24, 30, 30, 120, 120, 45, 72, 72, 80, 80, 144, 144, 144, 144, 720, 720, 144, 144, 240, 240, 252, 336, 336, 360, 360, 360, 360, 840, 840, 5040, 5040, 448, 576, 576, 630, 630, 720, 720, 960, 1152, 1152, 1440, 1440, 1920
Offset: 0
Triangle T(n,k) begins:
1;
1;
2, 2;
3, 6, 6;
8, 8, 12, 24, 24;
20, 24, 24, 30, 30, 120, 120;
45, 72, 72, 80, 80, 144, 144, 144, 144, 720, 720;
...
-
H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: seq(sort([seq(H(rev(partition(s)[q])),q=1..numbpart(s))]),s=1..9);
# second Maple program:
h:= proc(l) local n; n:= nops(l); mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), `if`(i<1, 0,
seq(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> sort([g(n, n, [])])[]:
seq(T(n), n=0..10); # Alois P. Heinz, Jan 07 2013
-
h[l_List] := With[{n = Length[l]}, Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[1, 1, {}] = {1}; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i<1, 0, Flatten @ Table[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Sort[g[n, n, {}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
A003040
Highest degree of an irreducible representation of symmetric group S_n of degree n.
Original entry on oeis.org
1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
Offset: 1
a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vasilii Duzhin, Table of n, a(n) for n = 1..153 (terms up to a(80) from Eric M. Schmidt)
- S. Comét, Improved methods to calculate the characters of the symmetric group, Math. Comp. 14 (1960) 104-117.
- J. McKay, The largest degrees of irreducible characters of the symmetric group. Math. Comp. 30 (1976), no. 135, 624-631. (Gives first 75 terms.)
- J. McKay, Page 1 of 5 pages of tables from Math. Comp. paper [reports 29th term incorrectly]
- J. McKay, Page 2 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 3 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 4 of 5 pages of tables from Math. Comp. paper
- J. McKay, Page 5 of 5 pages of tables from Math. Comp. paper
- Igor Pak, Greta Panova, and Damir Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693 [math.CO], 2018.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
A117500 gives the corresponding partitions of n.
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
a[n_] := a[n] = g[n, n, {}] // Max;
Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
-
def A003040(n):
res = 1
for P in Partitions(n):
res = max(res, P.dimension())
return res
# Eric M. Schmidt, May 07 2013
A003875
Degrees of irreducible representations of symmetric group S_11.
Original entry on oeis.org
1, 1, 10, 10, 44, 44, 45, 45, 110, 110, 120, 120, 132, 132, 165, 165, 210, 210, 231, 231, 252, 330, 330, 385, 385, 462, 462, 550, 550, 594, 594, 660, 660, 693, 693, 825, 825, 924, 924, 990, 990, 990, 990, 1100, 1100, 1155, 1155, 1188, 1232, 1232, 1320, 1320, 1540, 1540, 2310, 2310
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
-
A003875 := List(Irr(CharacterTable("S11")), chi->chi[1]);; Sort(A003875); # Eric M. Schmidt, Jul 18 2012
-
t1 := CharacterTable(SymmetricGroup(11)); [Degree(t1[i]) : i in [1 .. #t1]];
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[T[11]] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
A003869
Degrees of irreducible representations of symmetric group S_5.
Original entry on oeis.org
1, 1, 4, 4, 5, 5, 6
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
-
A003869 := List(Irr(CharacterTable("S5")), chi->chi[1]);; Sort(A003869); # Eric M. Schmidt, Jul 18 2012
-
// See A003875 for Magma code
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[T[5]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)
A003870
Degrees of irreducible representations of symmetric group S_6.
Original entry on oeis.org
1, 1, 5, 5, 5, 5, 9, 9, 10, 10, 16
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
-
A003870 := List(Irr(CharacterTable("S6")), chi->chi[1]);; Sort(A003870); # Eric M. Schmidt, Jul 18 2012
-
CharacterTable(SymmetricGroup(6));
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[T[6]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)
A027840
Number of subgroups of index n in fundamental group of a certain fiber space.
Original entry on oeis.org
1, 15, 220, 5275, 151086, 6605004, 362069912, 26370058035, 2384037107365, 264380945199210, 35133143655934644, 5515729438742221708, 1009373492449379367974, 212997911074525038601560, 51337590023913924398371080, 14016616814674335739387516003
Offset: 1
Third term corrected from 240 to 220, Aug 15 1999
A003871
Degrees of irreducible representations of symmetric group S_7.
Original entry on oeis.org
1, 1, 6, 6, 14, 14, 14, 14, 15, 15, 20, 21, 21, 35, 35
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
-
A003871 := List(Irr(CharacterTable("S7")), chi->chi[1]);; Sort(A003871); # Eric M. Schmidt, Jul 18 2012
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[T[7]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)
Showing 1-10 of 38 results.
Comments