cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060277 Number of m for which a+b+c = n; abc = m has at least two distinct solutions (a,b,c) with 1 <= a <= b <= c.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 3, 2, 7, 3, 2, 5, 4, 3, 5, 9, 2, 5, 6, 9, 5, 9, 14, 9, 7, 5, 10, 10, 11, 18, 7, 11, 16, 14, 12, 12, 23, 19, 13, 18, 11, 20, 19, 32, 17, 21, 18, 25, 19, 21, 27, 22, 21, 31, 27, 24, 28, 42, 34, 33, 21, 28, 31, 35, 47
Offset: 1

Views

Author

Naohiro Nomoto, Mar 23 2001

Keywords

Comments

A triple (a,b,c) as described in the name cannot have c prime. - David A. Corneth, Aug 01 2018

Examples

			(14 = 6+6+2 = 8+3+3, 72 = 6*6*2 = 8*3*3); (14 = 8+5+1 = 10+2+2, 40 = 8*5*1 = 10*2*2); 14 has two "m" variables. so a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[ Tally[ Times @@@ IntegerPartitions[n, {3}]], {m_,c_} /; c>1]; Array[a, 84] (* Giovanni Resta, Jul 27 2018 *)
  • PARI
    a(n)={my(M=Map()); for(i=n\3, n, for(j=(n-i+1)\2, min(n-1-i, i), my(k=n-i-j); my(m=i*j*k); my(z); mapput(M, m, if(mapisdefined(M, m, &z), z + 1, 1)))); #select(z->z>=2, if(#M, Mat(M)[, 2], []))} \\ Andrew Howroyd, Jul 27 2018

Formula

a(n) = Sum_{k>=2} A317578(n,k). - Alois P. Heinz, Aug 01 2018

Extensions

Description revised by David W. Wilson and Don Reble, Jun 04 2002

A060292 At least two unordered triples of positive numbers have product n and equal sums.

Original entry on oeis.org

36, 40, 72, 90, 96, 126, 144, 168, 176, 200, 225, 234, 240, 252, 270, 280, 288, 297, 320, 360, 396, 408, 420, 432, 450, 480, 504, 520, 540, 546, 550, 560, 576, 588, 600, 630, 648, 672, 675, 690, 714, 720, 735, 736, 768, 780, 784, 800, 816, 840, 850, 855
Offset: 1

Views

Author

Naohiro Nomoto, Mar 24 2001

Keywords

Examples

			36=6*6*1=9*2*2. 6+6+1=9+2+2. so 36 is in the sequence.
		

Crossrefs

Cf. A060275.

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    for i from 1 to N do R[i]:= {} od:
    A:= {}:
    for a from 1 to floor(N^(1/3)) do
      for b from a to floor((N/a)^(1/2)) do
        for c from b to floor(N/(a*b)) do
           p:= a*b*c;
           s:= a+b+c;
           if member(s,R[p]) then A:= A union {p}
           else R[p]:= R[p] union {s}
           fi;
    od od od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Feb 09 2015
    # second Maple program:
    b:= proc(n, k, t) option remember; expand(`if`(t=0, `if`(kk, 0, b(n/d, d, t-1)*x^d), d=numtheory[divisors](n))))
        end:
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while max(coeffs(b(k$2, 2)))<2 do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 16 2020
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = Expand[If[t == 0, If[k < n, 0, x^n], Sum[If[d > k, 0, b[n/d, d, t - 1] x^d], {d, Divisors[n]}]]];
    a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], Max[ CoefficientList[b[k, k, 2], x]] < 2, k++]; k];
    Array[a, 52] (* Jean-François Alcover, May 30 2020, after Alois P. Heinz *)

Extensions

Name changed by Robert Israel, Feb 09 2015
Showing 1-2 of 2 results.