cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060277 Number of m for which a+b+c = n; abc = m has at least two distinct solutions (a,b,c) with 1 <= a <= b <= c.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 3, 2, 7, 3, 2, 5, 4, 3, 5, 9, 2, 5, 6, 9, 5, 9, 14, 9, 7, 5, 10, 10, 11, 18, 7, 11, 16, 14, 12, 12, 23, 19, 13, 18, 11, 20, 19, 32, 17, 21, 18, 25, 19, 21, 27, 22, 21, 31, 27, 24, 28, 42, 34, 33, 21, 28, 31, 35, 47
Offset: 1

Views

Author

Naohiro Nomoto, Mar 23 2001

Keywords

Comments

A triple (a,b,c) as described in the name cannot have c prime. - David A. Corneth, Aug 01 2018

Examples

			(14 = 6+6+2 = 8+3+3, 72 = 6*6*2 = 8*3*3); (14 = 8+5+1 = 10+2+2, 40 = 8*5*1 = 10*2*2); 14 has two "m" variables. so a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[ Tally[ Times @@@ IntegerPartitions[n, {3}]], {m_,c_} /; c>1]; Array[a, 84] (* Giovanni Resta, Jul 27 2018 *)
  • PARI
    a(n)={my(M=Map()); for(i=n\3, n, for(j=(n-i+1)\2, min(n-1-i, i), my(k=n-i-j); my(m=i*j*k); my(z); mapput(M, m, if(mapisdefined(M, m, &z), z + 1, 1)))); #select(z->z>=2, if(#M, Mat(M)[, 2], []))} \\ Andrew Howroyd, Jul 27 2018

Formula

a(n) = Sum_{k>=2} A317578(n,k). - Alois P. Heinz, Aug 01 2018

Extensions

Description revised by David W. Wilson and Don Reble, Jun 04 2002