cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060305 Pisano periods for primes: period of Fibonacci numbers mod prime(n).

Original entry on oeis.org

3, 8, 20, 16, 10, 28, 36, 18, 48, 14, 30, 76, 40, 88, 32, 108, 58, 60, 136, 70, 148, 78, 168, 44, 196, 50, 208, 72, 108, 76, 256, 130, 276, 46, 148, 50, 316, 328, 336, 348, 178, 90, 190, 388, 396, 22, 42, 448, 456, 114, 52, 238, 240, 250, 516, 176, 268, 270, 556
Offset: 1

Views

Author

Louis Mello (mellols(AT)aol.com), Mar 26 2001

Keywords

Comments

Assuming Wall's conjecture (which is still open) allows one to calculate A001175(m) when m is a prime power since for any k >= 1: A001175(prime(n)^k) = a(n)*prime(n)^(k-1). For example: A001175(2^k) = 3*2^(k-1) = A007283(k-1).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local F, k, p;
          F:=[1,1]; p:=ithprime(n);
          for k while F<>[0,1] do
            F:=[F[2], irem(F[1]+F[2],p)]
          od: k
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    Table[p=Prime[n]; a={1,0}; a0=a; k=0; While[k++; s=Mod[Plus@@a,p];a=RotateLeft[a]; a[[2]]=s; a!=a0]; k, {n,100}] (* T. D. Noe, Jun 12 2006 *)
  • PARI
    for(n=1,100,s=1; while(sum(i=n,n+s,abs(fibonacci(i)%prime(n)-fibonacci(i+s)%prime(n)))+sum(i=n+1,n+1+s,abs(fibonacci(i)%prime(n)-fibonacci(i+s)%prime(n)))>0,s++); print1(s,","))
    
  • Python
    from itertools import count
    from sympy import prime
    def A060305(n):
        x, p = (1,1), prime(n)
        for k in count(1):
            if x == (0,1):
                return k
            x = (x[1], (x[0]+x[1]) % p) # Chai Wah Wu, May 31 2022

Formula

a(n) = A001175(prime(n)). - Jonathan Sondow, Dec 09 2017
a(n) = (3 - L(p))/2 * (p - L(p)) / A296240(n) for n >= 4, where p = prime(n) and L(p) = Legendre(p|5); so a(n) <= p-1 if p == +- 1 mod 5, and a(n) <= 2*p+2 if p == +- 2 mod 5. See Wall's Theorems 6 and 7. - Jonathan Sondow, Dec 10 2017

Extensions

Corrected by Benoit Cloitre, Jun 04 2002
Name clarified by Jonathan Sondow, Dec 09 2017