cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060312 Number of distinct ways to tile a 2 X n rectangle with dominoes (solutions are identified if they are rotations or reflections of each other).

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 1

Views

Author

Thomas Ward, Mar 27 2001

Keywords

Comments

Same as A001224 except that there a(2)=2 not 1. - N. J. A. Sloane, Mar 30 2015

Examples

			a(3)=2 because of the configurations |= and |||.
		

Crossrefs

Essentially the same as A001224, which is the main entry for this sequence. Other versions of the sequence can be found in A068928 and A102526.

Programs

  • Magma
    [n eq 1 select 1 else (1/2)*(Fibonacci(n+2)+Fibonacci(Floor((n-(-1)^n)/2)+2)): n in [0..40]]; // Vincenzo Librandi, Nov 22 2014
  • Maple
    # Maple code for A060312 and A001224 from N. J. A. Sloane, Mar 30 2015
    with(combinat); F:=fibonacci;
    f:=proc(n) option remember;
    if n=2 then 1 # change this to 2 to get A001224
    elif (n mod 2) = 0 then (F(n+1)+F(n/2+2))/2;
    else (F(n+1)+F((n+1)/2))/2; fi; end;
    [seq(f(n),n=1..50)];
  • Mathematica
    CoefficientList[Series[-(x^7 + x^6 + x^5 + 2 x^4 - x^3 + x^2 - 1) / ((x^2 + x - 1) (x^4 + x^2 - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)

Formula

If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 for n > 1 and a(2n-1) = (F(2n) + F(n))/2. [Corrected by Manfred Boergens, Aug 25 2025]
a(n) = (F(n+1)+F(floor((n+3+(-1)^n)/2)))/2 for n!=2. - Manfred Boergens, Aug 25 2025
G.f.: -x*(x^7 + x^6 + x^5 + 2*x^4 - x^3 + x^2 - 1) / ((x^2 + x - 1)*(x^4 + x^2 - 1)). - Colin Barker, Dec 15 2012

Extensions

Edited by N. J. A. Sloane, Mar 30 2015