cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A102541 Triangle read by rows, formed from antidiagonals of Losanitsch's triangle. T(n, k) = A034851(n-k, k), n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 4, 1, 1, 3, 6, 2, 1, 4, 9, 6, 1, 1, 4, 12, 10, 3, 1, 5, 16, 19, 9, 1, 1, 5, 20, 28, 19, 3, 1, 6, 25, 44, 38, 12, 1, 1, 6, 30, 60, 66, 28, 4, 1, 7, 36, 85, 110, 66, 16, 1, 1, 7, 42, 110, 170, 126, 44, 4, 1, 8, 49, 146, 255, 236, 110, 20, 1, 1, 8, 56
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

Row sums A102526 are essentially the same as A001224, A060312 and A068928.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives Losanitsch's triangle A034851 as a square array. - Johannes W. Meijer, Aug 24 2013
The number of ways to cover n-length line by exactly k 2-length segments excluding symmetric covers. - Philipp O. Tsvetkov, Nov 08 2013
Also the number of equivalence classes of ways of placing k 2 X 2 tiles in an n X 2 rectangle under all symmetry operations of the rectangle. - Christopher Hunt Gribble, Feb 16 2014
T(n, k) is the number of irreducible caterpillars with n+3 edges and diameter k+2. - Christian Barrientos, Apr 05 2020

Examples

			The first few rows of triangle T(n, k) are:
n/k: 0, 1, 2, 3
0:   1
1:   1
2:   1, 1
3:   1, 1
4:   1, 2, 1
5:   1, 2, 2
6:   1, 3, 4, 1
7:   1, 3, 6, 2
		

Crossrefs

Programs

  • Maple
    From Johannes W. Meijer, Aug 24 2013: (Start)
    T := proc(n,k) option remember: if n <0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: A034851(n-k, k) end: A034851 := proc(n, k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1, (k-1)/2) else t := 0; fi; A034851(n-1, k-1) + A034851(n-1, k)-t; end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16);  # End first program
    T := proc(n,k) option remember: if n < 0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: if n=0 then return(1) fi: if type(n, even) or type(k, even) then procname(n-1, k) + procname(n-2, k-1) else procname(n-1, k) + procname(n-2, k-1) - binomial((n-3)/2-(k-1)/2, (n-3)/2-(k-1)) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16); # End second program (End)
  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2;
    t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2;
    T[n_, k_] := t[n - k, k];
    Table[T[n, k], {n, 0, 16}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Jul 21 2022 *)

Formula

T(n, k) = A034851(n-k, k), n >= 0 and 0 <= k <= floor(n/2).
T(n, k) = T(n-1, k) + T(n-2, k-1) - C((n-3)/2-(k-1)/2, (n-3)/2-(k-1)) except when n or k even then T(n, k) = T(n-1, k) + T(n-2, k-1) with T(0, 0) = 1, T(n, 0) = 0 for n<0 and T(n, k) = 0 for k < 0 and k > floor(n/2). - Johannes W. Meijer, Aug 24 2013

Extensions

Definition edited, incorrect formula deleted, keyword corrected and extended by Johannes W. Meijer, Aug 24 2013

A001224 If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.

Original entry on oeis.org

1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 1

Views

Author

Keywords

Comments

Arises from a problem of finding the number of inequivalent ways to pack a 2 X n rectangle with dominoes. The official solution is given in A060312. The present sequence gives the correct answer provided n != 2, when it gives 2 instead of 1. To put it another way, the present sequence gives the number of tilings of a 2 x n rectangle with dominoes when left-to-right mirror images are not regarded as distinct. - N. J. A. Sloane, Mar 30 2015
Also the number of inequivalent ways to tile a 2 X n rectangle with a combination of squares with sides 1 or 2. - John Mason, Nov 30 2022
Slavik V. Jablan observes that this is also the number of generating rational knots and links. See reference.
Also the number of distinct binding configurations on an n-site one-dimensional linear lattice, where the molecules cannot touch each other. This number determines the order of recurrence for the partition function of binding to a two-dimensional n X m lattice.
From Petros Hadjicostas, Jan 08 2018: (Start)
Consider Christian G. Bower's theory of transforms given in a weblink below. For each positive integer k and each input sequence (b(n): n>=1) with g.f. B(x) = Sum_{n>=1} b(n)*x^n, let (a_k(n): n>=1) = BIK[k](b(n): n>=1). (We thus change some of the notation in Bower's weblink.) Here, BIK[k] is the "reversible, indistinct, unlabeled" transform for k boxes.
If BIK[k](x) = Sum_{n>=1} a_k(n)*x^n is the g.f. of the output sequence, then it can be proved that BIK[k](x) = (B(x)^k + B(x^2)^{k/2})/2, when k is even, and = B(x)*BIK[k-1](x), when k is odd. (We assume BIK[0](x) = 1.)
If (a(n): n>=1) = BIK(b(n): n>=1) with g.f. BIK(x) = 1 + Sum_{n>=1} a(n)*x^n, then BIK(x) = 1 + Sum_{k>=1} BIK[k](x). (The addition of the extra 1 in the g.f. seems arbitrary.) We then get BIK(x) = 1 + (1/2)*(B(x)/(1 - B(x)) + (B(x) + B(x^2))/(1 - B(x^2))).
For this sequence, the input sequence satisfies b(1) = b(2) = 1 and b(n) = 0 for n >= 3. Hence, B(x) = x + x^2 and BIK(x) = (1+x)*(1-x-x^3)/((1-x-x^2)*(1-x^2-x^4)), which equals Christian G. Bower's g.f. in the formula section below. (End)

Examples

			From _Petros Hadjicostas_, Jan 08 2018: (Start)
We give some examples to explain _Christian G. Bower's theory of transforms given in the weblink above. We have boxes of two sizes here: boxes that can hold one ball and boxes that can hold two balls. (This is because we want the BIK transform of x + x^2. See the comments above.) Two boxes of the same size are considered identical (indistinct and unlabeled). We place the boxes in a line that can be read in either direction. Here, a(n) = total number of ways of placing such boxes in such a line so that the total number of balls in the boxes is n.
When we have 4 balls in total inside the boxes, we have the following configurations of boxes in a line that can be read in either direction: 1111, 121, 211, and 22. (Note that 211 = 112.) Hence, a(4) = 4.
When n = 5, we have the following configurations of boxes: 11111, 2111, 1211, 221, and 212. Hence, a(5) = 5.
When n = 6, we have: 111111, 21111, 12111, 11211, 2211, 2121, 2112, 1221, and 222. Hence, a(6) = 9. (End)
		

References

  • S. Golomb, Polyominoes, Princeton Univ. Press 1994.
  • S. Jablan S. and R. Sazdanovic, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A060312, A068928 and A102526.
Cf. A000045.

Programs

  • Magma
    [(1/2)*((Fibonacci(n+1))+Fibonacci(((n+3+(-1)^n) div 2))): n in [1..40]]; // Vincenzo Librandi, Nov 23 2014
  • Maple
    # Maple code for A060312 and A001224 from N. J. A. Sloane, Mar 30 2015
    with(combinat); F:=fibonacci;
    f:=proc(n) option remember;
    if n=2 then 1 # change this to 2 to get A001224
    elif (n mod 2) = 0 then (F(n+1)+F(n/2+2))/2;
    else (F(n+1)+F((n+1)/2))/2; fi; end;
    [seq(f(n),n=1..50)];
    A001224:=-(-1-z+2*z**2+z**3+z**4+z**5)/(z**4+z**2-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[5,4,2,2,1,1]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,0,-1,-1][i] else 0 fi)^n)[1,6]: seq(a(n), n=1..38); # Alois P. Heinz, Aug 26 2008
  • Mathematica
    a[n_?EvenQ] := (Fibonacci[n + 1] + Fibonacci[n/2 + 2])/2; a[n_?OddQ] := (Fibonacci[n + 1] + Fibonacci[(n + 1)/2])/2; Table[a[n], {n, 38}] (* Jean-François Alcover, Oct 06 2011, after formula *)
    LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 2, 2, 4, 5, 9}, 38] (* Jean-François Alcover, Sep 21 2017 *)

Formula

a(2n+1) = A051450(n+1) and a(2n) = A005207(n+1).
From Christian G. Bower, May 09 2000: (Start)
G.f.: (2-(x+x^2)^2)/(2*(1-x-x^2)) + (1+x+x^2)*(x^2+x^4)/(2*(1-x^2-x^4)).
"BIK" transform of x+x^2. (End)
If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
G.f.: (1+x)*(1-x-x^3)/((1-x-x^2)*(1-x^2-x^4)). (See the Comments section above.) - Petros Hadjicostas, Jan 08 2018
From Manfred Boergens, Aug 25 2025: (Start)
a(n) = (Fibonacci(n+1) + Fibonacci(floor((n+3+(-1)^n)/2)))/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). (End)

Extensions

More terms from Christian G. Bower, May 09 2000
Typo in references corrected by Jernej Azarija, Oct 23 2013
Edited by N. J. A. Sloane, Mar 30 2015

A102526 Antidiagonal sums of Losanitsch's triangle (A034851).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

This is an interleaving of A005207 and A051450. Thus a(2*m) = A005207(m) = (F(2*m-1) + F(m+1)) / 2, a(2*m - 1) = A051450(m) = (F(2*m) + F(m)) / 2 where F() are Fibonacci numbers (A000045). - Max Alekseyev, Jun 28 2006
The Kn11(n) and Kn21(n) sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal a(n), while the Kn12(n) and Kn22(n) sums equal (a(n+2)-A000012(n)) and the Kn13(n) and Kn23(n) sums equal (a(n+4)-A008619(n+4)). - Johannes W. Meijer, Jul 14 2011
a(n) is the number of homeomorphically irreducible caterpillars with n + 3 edges. - Christian Barrientos, Sep 12 2020

References

  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.

Crossrefs

Cf. A034851.
Essentially the same as A001224, A060312 and A068928.

Programs

  • Maple
    with(combinat): A102526 :=proc(n): if type(n, even) then (fibonacci(n+1)+fibonacci(n/2+2))/2 else (fibonacci(n+1)+fibonacci((n+1)/2))/2 fi: end: seq(A102526(n), n=0..38); # Johannes W. Meijer, Jul 14 2011
  • Mathematica
    LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 1, 2, 2, 4, 5}, 40] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    Vec((1+x)*(1-x-x^3)/(x^2+x-1)/(x^4+x^2-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 17 2017
    
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,-1,0,-1,2,1]^n*[1;1;2;2;4;5])[1,1] \\ Charles R Greathouse IV, Nov 17 2017

Formula

G.f.: -(1+x)*(x^3+x-1) / ( (x^2+x-1)*(x^4+x^2-1) ). - R. J. Mathar, Nov 09 2013
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 17 2020

A232622 Number of incongruent domino tilings of the 3 X (2n) board.

Original entry on oeis.org

1, 2, 5, 14, 46, 156, 561, 2037, 7525, 27874, 103741, 386386, 1440946, 5374772, 20054945, 74835209, 279273961, 1042224066, 3889577781, 14515950582, 54174058390, 202179773644, 754544416081, 2815995989821, 10509437228941, 39221745831842, 146377537461485
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2013

Keywords

Comments

Analog to A060312, which counts tilings of the 2 X n board.
Sequence A068928 counts the smaller set of the incongruent tilings of 3 X (2n) without points where 4 tiles meet.

Crossrefs

Formula

Conjecture: G.f.: ( -1+3*x+4*x^2-10*x^3+4*x^5-x^6 ) / ( (x-1)*(x^2-4*x+1)*(x^4-4*x^2+1) ).
a(n) = 5a(n-1)-a(n-2)-19a(n-3)+19a(n-4)+a(n-5)-5a(n-6)+a(n-7) for n > 6. - Conjectured by Jean-François Alcover, Jan 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Sep 20 2017

A329279 Number of distinct tilings of a 2n X 2n square with 1 x n polyominoes.

Original entry on oeis.org

1, 9, 11, 19, 22, 33, 37, 51, 56, 73, 79, 99, 106, 129, 137, 163, 172, 201, 211, 243, 254, 289, 301, 339, 352, 393, 407, 451, 466, 513, 529, 579, 596, 649, 667, 723, 742, 801, 821, 883, 904, 969, 991, 1059, 1082, 1153, 1177, 1251, 1276, 1353, 1379, 1459, 1486, 1569, 1597, 1683, 1712, 1801, 1831
Offset: 1

Views

Author

Jeff Bowermaster, Nov 11 2019

Keywords

Comments

The positions of n X n subsquares greatly restricts which permutations are possible, simplifying finding solutions. a(n+1) - a(n) = A014682 (n+2), where A014682 is the Collatz function, except a(2)-a(1) = 8 and A014682(4) = 5.

Crossrefs

Cf. A014682, A060312, A058331 (bisection).

Programs

  • PARI
    a(n) = if(n==1,1,if(n%2,(n^2+3*n)/2+2,(n^2+4*n)/2+3))

Formula

For even n, a(n) = (n^2+4n)/2+3; for odd n, a(n) = (n^2+3n)/2+2 ; a(1) = 1.
Showing 1-5 of 5 results.