A102541
Triangle read by rows, formed from antidiagonals of Losanitsch's triangle. T(n, k) = A034851(n-k, k), n >= 0 and 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 4, 1, 1, 3, 6, 2, 1, 4, 9, 6, 1, 1, 4, 12, 10, 3, 1, 5, 16, 19, 9, 1, 1, 5, 20, 28, 19, 3, 1, 6, 25, 44, 38, 12, 1, 1, 6, 30, 60, 66, 28, 4, 1, 7, 36, 85, 110, 66, 16, 1, 1, 7, 42, 110, 170, 126, 44, 4, 1, 8, 49, 146, 255, 236, 110, 20, 1, 1, 8, 56
Offset: 0
The first few rows of triangle T(n, k) are:
n/k: 0, 1, 2, 3
0: 1
1: 1
2: 1, 1
3: 1, 1
4: 1, 2, 1
5: 1, 2, 2
6: 1, 3, 4, 1
7: 1, 3, 6, 2
-
From Johannes W. Meijer, Aug 24 2013: (Start)
T := proc(n,k) option remember: if n <0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: A034851(n-k, k) end: A034851 := proc(n, k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1, (k-1)/2) else t := 0; fi; A034851(n-1, k-1) + A034851(n-1, k)-t; end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16); # End first program
T := proc(n,k) option remember: if n < 0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: if n=0 then return(1) fi: if type(n, even) or type(k, even) then procname(n-1, k) + procname(n-2, k-1) else procname(n-1, k) + procname(n-2, k-1) - binomial((n-3)/2-(k-1)/2, (n-3)/2-(k-1)) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16); # End second program (End)
-
t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2;
t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2;
T[n_, k_] := t[n - k, k];
Table[T[n, k], {n, 0, 16}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Jul 21 2022 *)
Definition edited, incorrect formula deleted, keyword corrected and extended by
Johannes W. Meijer, Aug 24 2013
A277504
Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0
Array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 ...
0 1 3 6 10 15 21 28 36 45 ...
0 1 6 18 40 75 126 196 288 405 ...
0 1 10 45 136 325 666 1225 2080 3321 ...
0 1 20 135 544 1625 3996 8575 16640 29889 ...
0 1 36 378 2080 7875 23436 58996 131328 266085 ...
0 1 72 1134 8320 39375 140616 412972 1050624 2394765 ...
0 1 136 3321 32896 195625 840456 2883601 8390656 21526641 ...
0 1 272 9963 131584 978125 5042736 20185207 67125248 193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
Rows 0-20 are
A000012,
A001477,
A000217 (triangular numbers),
A002411 (pentagonal pyramidal numbers),
A037270,
A168178,
A071232,
A168194,
A071231,
A168372,
A071236,
A168627,
A071235,
A168663,
A168664,
A170779,
A170780,
A170790,
A170791,
A170801,
A170802.
-
[[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
-
Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
-
T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
Array transposed for greater consistency by
Andrew Howroyd, Apr 04 2017
A089934
Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column.
Original entry on oeis.org
2, 3, 3, 5, 7, 5, 8, 17, 17, 8, 13, 41, 63, 41, 13, 21, 99, 227, 227, 99, 21, 34, 239, 827, 1234, 827, 239, 34, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 144, 3363, 39561, 200798, 454385, 454385, 200798
Offset: 1
Table starts:
========================================================
n\k| 1 2 3 4 5 6 7
---|----------------------------------------------------
1 | 2 3 5 8 13 21 34 ...
2 | 3 7 17 41 99 239 577 ...
3 | 5 17 63 227 827 2999 10897 ...
4 | 8 41 227 1234 6743 36787 200798 ...
5 | 13 99 827 6743 55447 454385 3729091 ...
6 | 21 239 2999 36787 454385 5598861 69050253 ...
7 | 34 577 10897 200798 3729091 69050253 1280128950 ...
... - _Andrew Howroyd_, Jun 06 2017
a(2,2)=7:
11 11 11 10 10 01 01
11 10 01 11 01 11 10
T(n, 0) = T(0, m) = 1. Zero based table is
A089980.
-
step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))}
mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])}
T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ Andrew Howroyd, Dec 24 2019
A227690
Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles reduced for symmetry; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 3, 4, 1, 1, 1, 1, 5, 6, 6, 5, 1, 1, 1, 1, 9, 10, 13, 10, 9, 1, 1, 1, 1, 12, 21, 39, 39, 21, 12, 1, 1, 1, 1, 21, 39, 115, 77, 115, 39, 21, 1, 1, 1, 1, 30, 82, 295, 521, 521, 295, 82, 30, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 4, 5, 9, 12, 21, ...
1, 1, 2, 3, 6, 10, 21, 39, 82, ...
1, 1, 4, 6, 13, 39, 115, 295, 861, ...
1, 1, 5, 10, 39, 77, 521, 1985, 8038, ...
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, ...
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, ...
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023, ...
...
A(4,3) = 6 because there are 6 ways to tile a 3 X 4 rectangle by subsquares, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct:
._____ _. ._______. ._______.
| |_| | | | | |_|_|
| |_| |___|_ _| |___| |
|_____|_| |_|_|_|_| |_|_|___|
._______. ._______. ._______.
| |_|_| |_| |_| |_|_|_|_|
|___|_|_| |_|___|_| |_|_|_|_|
|_|_|_|_| |_|_|_|_| |_|_|_|_|
A359019
Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 21, 39, 82, 163, 347, 717, 1533, 3232, 6927, 14748, 31645, 67690, 145322, 311535, 668997, 1435645, 3083301, 6619842, 14218066, 30533005, 65580338, 140847132, 302522253, 649759735, 1395611508, 2997573501, 6438470626, 13829057884, 29703388721, 63799607283, 137035047576, 294336860797, 632205714741
Offset: 0
a(4) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359020
Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0
a(3) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359021
Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0
a(2) is 5 because of:
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | |
+-+-+ +-+-+ + + + + +-+-+
| | | | | | | | | | |
+-+-+ + + +-+-+ +-+-+ + +
| | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ + + + + +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359022
Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, 459957, 2551794, 14150081, 78597739
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359023
Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, 6542578, 49828415
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359024
Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Showing 1-10 of 21 results.
Comments