A060313 Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) on n labeled nodes.
1, 2, 0, 16, 25, 576, 2989, 51584, 512649, 8927200, 130956001, 2533847328, 48008533885, 1059817074512, 24196291364925, 609350187214336, 16135860325700881, 459434230368302016, 13788624945433889593, 439102289933675933600, 14705223056221892676741
Offset: 1
Examples
From _Gus Wiseman_, Jan 22 2020: (Start) The a(1) = 1 through a(4) = 16 trees (in the format root[branches], empty column shown as dot) are: 1 1[2] . 1[2,3,4] 2[1] 1[2[3,4]] 1[3[2,4]] 1[4[2,3]] 2[1,3,4] 2[1[3,4]] 2[3[1,4]] 2[4[1,3]] 3[1,2,4] 3[1[2,4]] 3[2[1,4]] 3[4[1,2]] 4[1,2,3] 4[1[2,3]] 4[2[1,3]] 4[3[1,2]] (End)
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..400
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Eric Weisstein's World of Mathematics, Series-reduced tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Magma
[1] cat [n*Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Mar 07 2020
-
Maple
seq( `if`(n=1, 1, n*(n-2)!*add((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, k=0..n-2)), n=1..20); # G. C. Greubel, Mar 07 2020
-
Mathematica
f[n_] := If[n < 2, 1, n(n - 2)!Sum[(-1)^k*Binomial[n, k](n - k)^(n - 2 - k)/(n - 2 - k)!, {k, 0, n - 2}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v, Feb 12 2005 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]]; Table[Length[Select[lrt[Range[n]],Length[#]!=2&&FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
-
Sage
[1]+[n*factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
Formula
a(n) = n*(n-2)!*Sum_{k=0..n-2} (-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, n>1.
E.g.f.: x*(exp( - LambertW(-x/(1+x))) - (LambertW(-x/(1+x))/2 )^2).
a(n) ~ n^(n-1) * (1-exp(-1))^(n+1/2). - Vaclav Kotesovec, Oct 05 2013
E.g.f.: -(1+x)*LambertW(-x/(1+x)) - (x/2)*LambertW(-x/(1+x))^2. - G. C. Greubel, Mar 07 2020