cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060338 Triangle T(n,k) of coefficients of Meixner polynomials of degree n, k=0..n.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 14, 0, 9, 1, 0, 30, 0, 89, 0, 1, 0, 55, 0, 439, 0, 225, 1, 0, 91, 0, 1519, 0, 3429, 0, 1, 0, 140, 0, 4214, 0, 24940, 0, 11025, 1, 0, 204, 0, 10038, 0, 122156, 0, 230481, 0, 1, 0, 285, 0, 21378, 0, 463490, 0, 2250621, 0, 893025
Offset: 0

Views

Author

Vladeta Jovovic, Mar 30 2001

Keywords

Comments

The Meixner polynomials M_n(x) satisfy the recurrence: M_(k+1)=x*M_k-k^2*M_(k-1), M_(-1)=0, M_0=1.
See A060524 for an application to combinatorics. - N. J. A. Sloane, May 30 2013
The Meixner polynomials M_n(x) satisfy: M_n(x)=n!*sum(m=0..n/2, binomial(2*m,m)*sum(j=m..n/2, (-1)^(j)*x^(n-2*j)*sum(i=0..2*j-2*m, (2^(i-2*m)*stirling1(i+n+(-2)*j,n-2*j)*binomial(n-2*m-1,2*j-2*m-i))/(i+n+(-2)*j)!))). [Vladimir Kruchinin, Sep 25 2013]

Examples

			[1],
[1, 0],
[1, 0, -1],
[1, 0, -5, 0],
[1, 0, -14, 0, 9],
[1, 0, -30, 0, 89, 0],
[1, 0, -55, 0, 439, 0, -225],
[1, 0, -91, 0, 1519, 0, -3429, 0],
[1, 0, -140, 0, 4214, 0, -24940, 0, 11025],
[1, 0, -204, 0, 10038, 0, -122156, 0, 230481, 0], ...
M_1(x)=x, M_2(x)=x^2-1, M_3(x)=x^3-5*x, M_4(x)=x^4-14*x^2+9, M_5(x)=x^5-30*x^3+89*x, M_6(x)=x^6-55*x^4+439*x^2-225,...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Cf. A028353, A060524, A000330 (third column), A214615 (row sums), A214616 (fifth column).
Triangle without zeros: A094368. Unsigned version: A060524.

Programs

  • Mathematica
    m[0] = 1; m[1] = x; m[k_] := m[k] = x*m[k - 1] - (k - 1)^2*m[k - 2]; row[n_] := CoefficientList[m[n], x] // Reverse // Abs; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)
  • Maxima
    M(n,x):=n!*sum(binomial(2*m,m)*sum(((sum((2^(i-2*m)*stirling1(i+n-2*j,n-2*j)*binomial(n-2*m-1,2*j-2*m-i))/(i+n-2*j)!,i,0,2*j-2*m))*(-1)^(j)*x^(n-2*j)),j,m,n/2),m,0,n/2); /* Vladimir Kruchinin, Sep 25 2013 */

Formula

E.g.f.: exp(x*arctan(y))/sqrt(1+y^2).