1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 9, 0, 14, 0, 1, 0, 89, 0, 30, 0, 1, 225, 0, 439, 0, 55, 0, 1, 0, 3429, 0, 1519, 0, 91, 0, 1, 11025, 0, 24940, 0, 4214, 0, 140, 0, 1, 0, 230481, 0, 122156, 0, 10038, 0, 204, 0, 1, 893025, 0, 2250621, 0, 463490, 0, 21378, 0, 285, 0, 1, 0
Offset: 0
Triangle begins:
[1],
[0, 1],
[1, 0, 1],
[0, 5, 0, 1],
[9, 0, 14, 0, 1],
[0, 89, 0, 30, 0, 1],
[225, 0, 439, 0, 55, 0, 1],
[0, 3429, 0, 1519, 0, 91, 0, 1],
[11025, 0, 24940, 0, 4214, 0, 140, 0, 1],
[0, 230481, 0, 122156, 0, 10038, 0, 204, 0, 1],
[893025, 0, 2250621, 0, 463490, 0, 21378, 0, 285, 0, 1],
[0, 23941125, 0, 14466221, 0, 1467290, 0, 41778, 0, 385, 0, 1],
...
Signed version begins:
[1],
[0, 1],
[-1, 0, 1],
[0, -5, 0, 1],
[9, 0, -14, 0, 1],
[0, 89, 0, -30, 0, 1],
[-225, 0, 439, 0, -55, 0, 1],
[0, -3429, 0, 1519, 0, -91, 0, 1],
...
From _Peter Bala_, Feb 23 2024: (Start)
Maple can verify the following series for Pi:
Row 1 polynomial R(1, x) = x:
Pi = 3 + 4*Sum_{n >= 1} (-1)^(n+1)/((2*n + 1)*R(1, 2*n)*R(1, 2*n+2)).
Row 3 polynomial R(3, x) = 5*x + x^3:
(3/2)^2 * Pi = 7 + 4*(3^4)*Sum_{n >= 1} (-1)^(n+1)/((2*n + 1)*R(3, 2*n)*R(3, 2*n+2)).
Row 5 polynomial R(5, x) = 89*x + 30*x^3 + x^5:
((3*5)/(2*4))^2 * Pi = 11 + 4*(3*5)^4*Sum_{n >= 1} (-1)^(n+1)/((2*n + 1)*R(5, 2*n)*R(5, 2*n+2)). (End)
Comments