A060385 Largest prime factor of n-th Fibonacci number.
2, 3, 5, 2, 13, 7, 17, 11, 89, 3, 233, 29, 61, 47, 1597, 19, 113, 41, 421, 199, 28657, 23, 3001, 521, 109, 281, 514229, 61, 2417, 2207, 19801, 3571, 141961, 107, 2221, 9349, 135721, 2161, 59369, 421, 433494437, 307, 109441, 28657, 2971215073, 1103
Offset: 3
Keywords
Examples
F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
Links
- Tyler Busby, Table of n, a(n) for n = 3..1422 (terms 3..1000 from Charles R Greathouse IV, terms 1001..1408 from Amiram Eldar)
- U. Alfred, On the form of primitive factors of Fibonacci numbers, Fibonacci Quarterly 1:1 (1963), pp. 43-45.
- Jhon J. Bravo and Florian Luca, On the largest prime factor of the k-Fibonacci numbers, arXiv:1210.4101 [math.NT], 2012.
- D. E. Daykin and L. A. G. Dresel, Factorization of Fibonacci numbers, Fibonacci Quarterly 8:1 (1970), pp. 23-30.
Programs
-
Magma
[Maximum(PrimeDivisors(Fibonacci(n))): n in [3..50]]; // Vincenzo Librandi, Dec 25 2016
-
Mathematica
Table[First[Last[FactorInteger[Fibonacci[n]]]], {n, 3, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
-
PARI
a(n)=my(f=factor(fibonacci(n))[,1]);f[#f] \\ Charles R Greathouse IV, Feb 01 2013
Formula
a(n) >= n - 1 for n > 12, see comments. It is not hard to show that a(n) > 1000 for n > 88. Similarly a(n) > 20641 for n > 120. - Charles R Greathouse IV, Feb 01 2013
Comments