cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A271309 Integers k such that A264137(k) < A060385(k).

Original entry on oeis.org

52, 60, 65, 74, 75, 76, 85, 108, 111, 121, 124, 125, 127, 131, 132, 140, 144, 150, 153, 156, 158, 172, 175, 180, 183, 185, 195, 201, 209, 213, 216, 220, 225, 250, 263, 287, 300, 301, 327, 328, 335, 337, 339, 344, 356, 370, 402, 404, 408, 412, 417, 423, 433, 435
Offset: 1

Views

Author

Altug Alkan, Apr 03 2016

Keywords

Comments

For all corresponding values of k, A000129(k) is a composite number. In other words, k cannot be a term of A096650.

Examples

			52 is a term because A264137(52) = 66923 < A060385(52) = 90481.
		

Crossrefs

Programs

  • PARI
    a060385(n) = my(f=factor(fibonacci(n))[, 1]); f[#f];
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    a264137(n) = my(p=factor(a000129(n))[, 1]); p[#p];
    lista(nn) = for(n=3, nn, if(a264137(n) < a060385(n), print1(n, ", ")));

Extensions

a(37)-a(54) from Amiram Eldar, May 19 2024

A264137 Largest prime factor of the n-th Pell number, A000129(n).

Original entry on oeis.org

2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 8297, 199, 179057, 59, 45697, 5741, 982789, 1153, 29201, 33461, 146449, 337, 44560482149, 269, 3272609, 665857, 52734529, 15607, 1800193921, 199, 1101341, 9369319, 4605197, 5521, 1746860020068409
Offset: 2

Views

Author

Jon E. Schoenfield, Dec 29 2015

Keywords

Comments

First differs from A246556 at n = 17. Since Pell(17) = 1136689 = 137 * 8297, we find that 137 does not divide any earlier Pell number, and hence A246556(17) = 137, but 8297 is also prime, and so a(17) = 8297.

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Fibonacci[n, 2]][[-1, 1]], {n, 25}] (* Alonso del Arte, Dec 10 2016 *)
    FactorInteger[#][[-1,1]]&/@LinearRecurrence[{2,1},{2,5},60] (* Harvey P. Dale, Jun 08 2019 *)
  • PARI
    a(n) = vecmax(factor(([2, 1; 1, 0]^n)[2, 1])[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000129(n)).

A193615 Second-largest prime factor of the n-th Fibonacci number, if composite, or 1 otherwise.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 5, 1, 3, 1, 13, 5, 7, 1, 17, 37, 11, 13, 89, 1, 7, 5, 233, 53, 29, 1, 31, 557, 47, 89, 1597, 13, 19, 149, 113, 233, 41, 2789, 211, 1, 199, 61, 461, 1, 47, 97, 151, 1597, 521, 953, 109, 661, 281, 797, 19489, 353, 61, 4513
Offset: 3

Views

Author

Keywords

Comments

For clarification: if the largest prime factor occurs more than once, then that prime factor is selected.

Examples

			F(82) = 2789 * 59369 * 370248451, so a(82) = 59369.
		

Crossrefs

Programs

  • Mathematica
    factors[n_] := Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]; fn[n_] := Module[{fibn = Fibonacci[n]}, If[PrimeQ[fibn], 1, factors[fibn][[-2]]]]; Table[fn[n], {n, 3, 80}]
  • PARI
    a(n)=my(f=factor(fibonacci(n)),t=#f[,1]);if(f[t,2]==1,if(t==1,1,f[t-1,1]),f[t,1])

A121170 Largest prime divisor of Fibonacci(5n).

Original entry on oeis.org

5, 11, 61, 41, 3001, 61, 141961, 2161, 109441, 3001, 474541, 2521, 14736206161, 141961, 230686501, 3041, 3415914041, 109441, 67735001, 570601, 8288823481, 474541, 2441738887963981, 20641, 158414167964045700001, 14736206161, 1114769954367361, 12317523121, 349619996930737079890201
Offset: 1

Views

Author

Alexander Adamchuk, Aug 14 2006

Keywords

Comments

Except for a(1) = 5 all a(n) are congruent to 1 (mod 10) (final digit is 1). Final digit of most prime divisors of F(5n) is 1.

Examples

			a(2) = 11 because F(10)= 5 * 11.
a(4) = 41 because F(20)= 3 * 5 * 11 * 41.
a(10) = 3001 because F(50)= 5^2 * 11 * 101 * 151 * 3001.
a(25) = 158414167964045700001 because F(125)= 5^3 * 3001 * 158414167964045700001.
		

Crossrefs

Programs

  • Mathematica
    Table[Max[Flatten[FactorInteger[Fibonacci[5n]]]],{n,1,50}]

Formula

a(n) = A060385(5*n).

Extensions

a(27)-a(29) from Amiram Eldar, Aug 01 2024

A271314 Largest prime factor of the n-th Jacobsthal number, A001045(n).

Original entry on oeis.org

3, 5, 11, 7, 43, 17, 19, 31, 683, 13, 2731, 127, 331, 257, 43691, 73, 174763, 41, 5419, 683, 2796203, 241, 4051, 8191, 87211, 127, 3033169, 331, 715827883, 65537, 20857, 131071, 86171, 109, 25781083, 524287, 22366891, 61681, 8831418697, 5419, 2932031007403, 2113, 18837001
Offset: 3

Views

Author

Altug Alkan, Apr 03 2016

Keywords

Comments

a(22) = 683 is the first repeated term in this sequence. Note that a(n+2) = A129738(n), for n < 20.

Examples

			a(6) = 7 because A001045(6) = 21 = 3*7.
		

Crossrefs

Essentially a combination of A005420 and A002587.

Programs

  • Mathematica
    FactorInteger[#][[-1, 1]] & /@ Take[#, -(Length@ # - 3)] &@ CoefficientList[Series[x/(1 - x - 2 x^2), {x, 0, 45}], x] (* Michael De Vlieger, Apr 04 2016, after Robert G. Wilson v at A001045 *)
  • PARI
    a001045(n) = (2^n - (-1)^n) / 3;
    a(n) = vecmax(factor(a001045(n))[,1]);

A074214 Integers m such that F(m) and F(2m) have the same largest prime factor where F(k) denotes the k-th Fibonacci number.

Original entry on oeis.org

3, 15, 21, 23, 25, 29, 33, 35, 39, 43, 45, 51, 55, 59, 63, 65, 75, 82, 83, 85, 87, 93, 99, 105, 107, 109, 111, 115, 119, 123, 125, 127, 131, 132, 133, 135, 137, 139, 142, 143, 145, 147, 151, 153, 158, 161, 166, 171, 173, 175, 179, 181, 183, 185, 187, 189, 191
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Why are even values rare? (First one is 82.)

Examples

			F(15) = 610 = 2*5*61 and F(30) = 832040 = 2^3*5*11*31*61 hence 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3,200],FactorInteger[Fibonacci[#]][[-1,1]]==FactorInteger[ Fibonacci[2#]][[-1,1]]&] (* Harvey P. Dale, Sep 04 2018 *)
  • PARI
    f(n) = vecmax(factor(fibonacci(n))[,1]); \\ A060385
    isok(m) = (m>2) && (f(m) == f(2*m)); \\ Michel Marcus, Feb 18 2021

Extensions

More terms from Don Reble, Sep 20 2002

A121169 Largest prime divisor of Fibonacci(100*n).

Original entry on oeis.org

570601, 5738108801, 87129547172401, 3160438834174817356001, 158414167964045700001, 87129547172401, 7358192362316341243805801, 7601587101128729489773008667804801, 427694148584338087778220001
Offset: 1

Views

Author

Alexander Adamchuk, Aug 14 2006

Keywords

Comments

Most prime divisors of Fibonacci(100*n) are congruent to 1 mod 10 (final digit is 1). It appears that a(n) == 1 (mod 100) for all n.

Examples

			a(1) = 570601 because F(100) = 3 * 5^2 * 11 * 41 * 101 * 151 * 401 * 3001 * 570601.
a(10) = 9372625568572722938847095612481183137496995522804466421273200001 because F(1000)= 3 * 5^3 * 7 * 11 * 41 * 101 * 151 * 251 * 401 * 2161 * 3001 * 4001 * 570601 * 9125201 * 112128001 * 1353439001 * 5738108801 * 28143378001 * 5465167948001 * 10496059430146001 * 84817574770589638001 * 158414167964045700001 * 9372625568572722938847095612481183137496995522804466421273200001.
		

Crossrefs

Programs

  • Mathematica
    Table[Max[Flatten[FactorInteger[Fibonacci[100n]]]],{n,10}]
  • PARI
    a(n) = my(f=factor(fibonacci(100*n))[, 1]); f[#f]; \\ Jinyuan Wang, Mar 17 2020

Formula

a(n) = A060385(100*n).

A325627 a(n) is the largest prime factor in A030426(n).

Original entry on oeis.org

2, 5, 13, 89, 233, 1597, 113, 28657, 514229, 2417, 2221, 59369, 433494437, 2971215073, 55945741, 2710260697, 555003497, 1429913, 46165371073, 86020717, 92180471494753, 99194853094755497, 1665088321800481, 361040209, 770857978613, 512119709, 8242065050061761
Offset: 1

Views

Author

Vincenzo Librandi, May 13 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(Fibonacci(NthPrime(n)))): n in [2..35]];
  • Mathematica
    Table[FactorInteger[Fibonacci [Prime[n]]][[-1, 1]], {n, 2, 30}]

Formula

From Amiram Eldar, Oct 25 2024: (Start)
a(n) = A006530(A030426(n)).
a(n) = A060385(prime(n+1)).
a(n) > c * prime(n) * log(prime(n)), where c is an effectively computable positive constant (Stewart, 1977). (End)

A115037 A number n is included if largest prime (or 1 if no prime divides) dividing the n-th Fibonacci number is itself a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 17, 23, 29, 43, 46, 47, 58, 69, 83, 86, 129, 131, 137, 141, 166, 262, 274, 332, 359, 411, 431, 433, 449, 509, 569, 571, 718, 862, 866, 898, 1018, 1138, 1142, 1293, 1347, 1436
Offset: 1

Views

Author

Leroy Quet, Feb 26 2006

Keywords

Comments

A001605 is a subsequence. 2036 and 2276 are also terms. - Chai Wah Wu, May 19 2020

Examples

			The 12th Fibonacci number is 144. The largest prime dividing 144 is 3 and 3 is the 4th Fibonacci number. So 12 is in the sequence.
		

Crossrefs

Programs

  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(n) = my(f=fibonacci(n)); (f==1) || isfib(vecmax(factor(f)[,1])); \\ Michel Marcus, Sep 06 2019

Extensions

More terms from Diana L. Mecum, Jun 02 2007
a(28)-a(40) from Michel Marcus, Sep 06 2019
a(41)-a(46) from Chai Wah Wu, May 19 2020
Showing 1-9 of 9 results.