A060437 a(n) is the number of different degrees in the sequence of the degrees of the irreducible representations of the symmetric group S_n, i.e., count each degree only once.
1, 1, 2, 3, 4, 5, 7, 12, 15, 22, 28, 38, 45, 52, 81, 107, 130, 179, 194, 280, 348, 438, 502, 693, 848, 1037, 1274, 1594, 1847, 2473, 2851, 3652, 4271, 5137, 6140, 7995, 9103, 11046, 12978, 16216, 18348, 23153, 26239, 31880, 37582, 45144, 51469, 63571, 71910
Offset: 1
Keywords
Examples
a(6) = 5 because the degrees for S_6 are 1,1,5,5,5,5,9,9,10,10,16 and counting each degree only once only 5 numbers remain: 1,5,9,10,16.
Programs
-
Maple
with(numtheory): g:= proc(n) option remember; `if`(n=1, 1, add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n))) end: b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], [seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)]) end: a:= n-> nops(map(g, {b(n, n)[]})): seq(a(n), n=1..30); # Alois P. Heinz, Aug 09 2012
-
Mathematica
g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]]; b[n_, i_] :=b[n, i] = If[n == 0 || i<2, {2^n}, Flatten @ Table[ Map[Function[{p}, p*Prime[i]^j], b[n-i*j, i-1]], {j, 0, n/i}] ]; a[n_] := Length[Union[g /@ b[n, n]]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
Extensions
More terms from Vladeta Jovovic, May 20 2003
a(22)-a(49) from Alois P. Heinz, Aug 09 2012
Comments