cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060455 7th-order Fibonacci numbers with a(0)=...=a(6)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 13, 25, 49, 97, 193, 385, 769, 1531, 3049, 6073, 12097, 24097, 48001, 95617, 190465, 379399, 755749, 1505425, 2998753, 5973409, 11898817, 23702017, 47213569, 94047739, 187339729, 373174033, 743349313, 1480725217
Offset: 0

Views

Author

Frank Ellermann, Apr 08 2001

Keywords

Comments

a(n) = number of runs in polyphase sort using 8 tapes and n-6 phases.

Examples

			General formula for k-th order numbers: f(n,k) = f(n-1,k) + ... + f(n-1-k,k) for n > k, otherwise f(n,k) = 1.
		

References

  • N. Wirth, Algorithmen und Datenstrukturen, 1975 (table 2.15 chapter 2.3.4).

Crossrefs

For k=1..5 see A000045, A000213, A000288, A000322, A000383.
Cf. A253333, A253318: primes and indices of primes in this sequence.
Cf. A122189 Heptanacci numbers with a(0),...,a(6) = 0,0,0,0,0,0,1.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) )); // G. C. Greubel, Feb 03 2019
    
  • Maple
    A060455 := proc(n) option remember: if n >=0 and n<=6 then RETURN(1) fi: procname(n-1)+procname(n-2)+procname(n-3)+procname(n-4)+procname(n-5)+procname(n-6)+procname(n-7) end;
  • Mathematica
    LinearRecurrence[{1,1,1,1,1,1,1},{1,1,1,1,1,1,1},40] (* Harvey P. Dale, Mar 17 2012 *)
  • PARI
    Vec((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) +O(x^40)) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Sage
    ((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 03 2019

Formula

a(n) = a(n-1) + a(n-2) + ... + a(n-7) for n > 6, a(0)=a(1)=...=a(6)=1.
G.f.: (-1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7). - R. J. Mathar, Oct 11 2011

Extensions

More terms from James Sellers, Apr 11 2001