cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A060458 Maximum value seen in the final n decimal digits of 2^j for all values of j.

Original entry on oeis.org

8, 96, 992, 9984, 99968, 999936, 9999872, 99999744, 999999488, 9999998976, 99999997952, 999999995904, 9999999991808, 99999999983616, 999999999967232, 9999999999934464, 99999999999868928, 999999999999737856, 9999999999999475712, 99999999999998951424, 999999999999997902848
Offset: 1

Views

Author

Labos Elemer, Apr 09 2001

Keywords

Comments

Consider the final n decimal digits of 2^j for all values of j. They are periodic. Sequence gives maximal value seen in these n digits.
With f(n) = a(n+1) - a(n), the difference f(n) - a(n) is always 8*10^n meaning that a(n) becomes its own "first differences" sequence when each term is prefixed a digit '8'. For higher order differences, the prefix 8 becomes: 8*10^n*Sum_{k=0..m-1} 9^k where m is the order. - R. J. Cano, May 11 2014

Examples

			Maximum of the last 4 digits of powers of 2 is 9984=10000-16. It occurs at 2^254. 2^254 = 289480223.....01978282409984 (with 77 digits, last 4 ones are ...9984). The period length of the last-4-digit segment is A005054(4)=500. For n=4 period: amplitude=9984, phase=254.
		

Crossrefs

Programs

  • Magma
    [10^n-2^n : n in [1..20]]; // Wesley Ivan Hurt, Sep 25 2014
    
  • Maple
    A060458:=n->10^n-2^n: seq(A060458(n), n=1..20); # Wesley Ivan Hurt, Sep 25 2014
  • Mathematica
    RecurrenceTable[{a[n] == 12 a[n - 1] - 20 a[n - 2], a[0] == 0, a[1] == 8}, a[n], {n, 1, 20}]  (* Geoffrey Critzer, Dec 15 2011*)
  • PARI
    a(n)=sum(j=0,n-1,2^(3*n-2*j)*binomial(n,j)) \\ R. J. Cano, May 15 2014
    
  • PARI
    A060458(n)=(5^n-1)<M. F. Hasler, Oct 31 2014
  • Sage
    [10^n - 2^n for n in range(1,19)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = 10^n - 2^n = 2^n*(5^n - 1).
From Geoffrey Critzer, Dec 15 2011: (Start)
a(n) = 12*a(n-1) - 20*a(n-2).
O.g.f.: 1/(1-10*x) - 1/(1-2*x). (End)
a(n) = f(n,0) where f(x,y) = Sum_{j=0..x+y-1} (2^(3*x-2*j)*binomial(x,j)). - R. J. Cano, May 15 2014
a(n) = 2^(n+2)*A003463(n). - R. J. Cano, Sep 25 2014
a(n) = 8*A016134(n-1). - R. J. Mathar, Mar 10 2022
E.g.f.: exp(2*x)*(exp(8*x) - 1). - Elmo R. Oliveira, Mar 26 2025

Extensions

Edited by M. F. Hasler, Oct 31 2014
More terms from Elmo R. Oliveira, Mar 26 2025
Showing 1-1 of 1 results.