cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060470 Smallest positive a(n) such that number of solutions to a(n)=a(j)+a(k) j

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 24, 26, 28, 33, 35, 37, 42, 44, 46, 51, 53, 55, 60, 62, 64, 69, 71, 73, 78, 80, 82, 87, 89, 91, 96, 98, 100, 105, 107, 109, 114, 116, 118, 123, 125, 127, 132, 134, 136, 141, 143, 145, 150, 152, 154, 159, 161, 163, 168, 170
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2001

Keywords

Comments

Numbers {1,6,8} mod 9 plus {2,3,4,5,12}.

Examples

			12 is in the sequence since it is 4+8 and 2+10 but no other sum of two distinct terms.
		

Crossrefs

Cf. A003044, A033627, A060469, A060471, A060472. Virtually identical to A003663.

Programs

  • Magma
    I:=[1,2,3,4,5,6,8,10,12,15,17,19,24]; [n le 13 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Feb 22 2018
    
  • Magma
    [n le 9 select Floor(n^2/12+n/2+3/4) else 2*n+3*Floor(n/3+2/3)-17: n in [1..65]]; // Bruno Berselli, Feb 22 2018
  • Mathematica
    f[s_List, j_Integer] := Block[{cnt, k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ cnt = Count[ss, k]; cnt == 0 || cnt > 2, k++]; Append[s, k]]; Nest[f[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
    CoefficientList[Series[(2 x^12 + x^9 + x^8 + x^7 + x^6 + x^2 + x + 1) / (x^4 - x^3 - x + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 22 2018 *)

Formula

From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 13.
G.f.: x*(2*x^12 + x^9 + x^8 + x^7 + x^6 + x^2 + x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 2*n + 3*floor(n/3 + 2/3) - 17 for n>9. - Bruno Berselli, Feb 22 2018