cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060469 Smallest positive a(n) such that number of solutions to a(n) = a(j)+a(k) j

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 23, 25, 28, 30, 35, 37, 40, 42, 47, 49, 52, 54, 59, 61, 64, 66, 71, 73, 76, 78, 83, 85, 88, 90, 95, 97, 100, 102, 107, 109, 112, 114, 119, 121, 124, 126, 131, 133, 136, 138, 143, 145, 148, 150, 155, 157, 160, 162, 167, 169, 172, 174
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2001

Keywords

Comments

Numbers {1,4,6,11} mod 12 plus {2,3,8}.

Examples

			11 is in the sequence since it is 3+8 but no other sum of two distinct terms.
		

Crossrefs

Virtually identical to A003662.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 23}, 100] (* Paolo Xausa, Mar 04 2024 *)
  • PARI
    Vec(x*(2*x^10+x^8+x^7+2*x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^2*(x+1)*(x^2+1)) + O(x^100)) \\ Colin Barker, Feb 27 2015

Formula

a(n) = a(n-1)+a(n-4)-a(n-5) for n>9. - Colin Barker, Feb 27 2015
G.f.: x*(2*x^10+x^8+x^7+2*x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Feb 27 2015
a(n) = (6*n - 22 - (-1)^n + A056594(n) - A056594(n+1))/2 for n > 6. - Stefano Spezia, Mar 11 2025

A060472 Smallest positive a(n) such that the number of solutions to a(n)=a(j)+a(k), j

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 25, 27, 29, 31, 36, 38, 40, 42, 44, 51, 53, 55, 57, 64, 66, 68, 70, 72, 77, 79, 81, 83, 85, 92, 94, 96, 98, 105, 107, 109, 111, 118, 120, 122, 124, 126, 131, 133, 135, 137, 139, 146, 148, 150, 152, 159, 161, 163
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2001

Keywords

Comments

Numbers {1,3,10,12,14,16,18,23,25,27,29,31,38,40,42,44,51,53} mod 54 plus {2,4,5,6,7,8,9,20,36}.

Examples

			12 is in the sequence since it is 5+7, 4+8, 3+9 and 2+10 but no other sum of two distinct terms.
		

Crossrefs

Programs

  • Mathematica
    f[s_List, j_Integer] := Block[{cnt, k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ cnt = Count[ss, k]; cnt == 0 || cnt > 4, k++]; Append[s, k]]; Nest[f[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
    CoefficientList[Series[(5 x^39 - 3 x^38 + 3 x^34 - x^33 + 5 x^29 + x^27 + x^26 + 6 x^25 + x^24 + x^23 + x^22 + x^21 + 4 x^20 + x^19 + x^18 + 2 x^17 + 2 x^16 + 3 x^15 + 2 x^14 + 2 x^13 + 2 x^12 + 2 x^11 + 2 x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) / (x^19 - x^18 - x + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 22 2018 *)

Formula

From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-18) - a(n-19) for n > 40.
G.f.: x*(5*x^39 - 3*x^38 + 3*x^34 - x^33 + 5*x^29 + x^27 + x^26 + 6*x^25 + x^24 + x^23 + x^22 + x^21 + 4*x^20 + x^19 + x^18 + 2*x^17 + 2*x^16 + 3*x^15 + 2*x^14 + 2*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^19 - x^18 - x + 1). (End)

A060471 Smallest positive a(n) such that number of solutions to a(n)=a(j)+a(k) j

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 30, 32, 34, 36, 41, 43, 45, 47, 52, 54, 56, 58, 63, 65, 67, 69, 74, 76, 78, 80, 85, 87, 89, 91, 96, 98, 100, 102, 107, 109, 111, 113, 118, 120, 122, 124, 129, 131, 133, 135, 140, 142, 144, 146, 151, 153, 155, 157
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2001

Keywords

Comments

Numbers {1,3,8,10} mod 11 plus {2,4,5,6,7,16}. Note that while the cases for "zero", "one", "two" and "four" essentially involve a third of the natural numbers, this case for "three" involves 4/11.

Examples

			12 is in the sequence since it is 5+7, 4+8 and 2+10 but no other sum of two distinct terms.
		

Crossrefs

Programs

  • Mathematica
    f[s_List, j_Integer] := Block[{cnt, k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ cnt = Count[ss, k]; cnt == 0 || cnt > 3, k++]; Append[s, k]]; Nest[f[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)

Formula

From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 17.
G.f.: x*(2*x^16 + x^12 + x^11 + x^10 + x^9 + x^8 + x^3 + x^2 + x + 1)/(x^5 - x^4 - x + 1). (End)

A003663 a(n) is smallest number != a(j) + a(k), j < k and a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 8, 10, 12, 15, 17, 19, 24, 26, 28, 33, 35, 37, 42, 44, 46, 51, 53, 55, 60, 62, 64, 69, 71, 73, 78, 80, 82, 87, 89, 91, 96, 98, 100, 105, 107, 109, 114, 116, 118, 123, 125, 127, 132, 134, 136, 141, 143, 145, 150, 152, 154, 159, 161, 163, 168, 170, 172, 177, 179
Offset: 1

Views

Author

Keywords

Comments

Numbers congruent to {1, 6, 8} mod 9 plus the number 12.

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,6,8,10,12,15,17,19,24]; [n le 9 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Feb 22 2018
  • Mathematica
    f[s_List, j_Integer] := Block[{k = s[[-1]] + 1, ss = Union[Plus @@@ Subsets[s, {j}]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#, 2] &, {1, 6}, 65] (* Robert G. Wilson v, Jul 05 2014 *)
    LinearRecurrence[{1,0,1,-1},{1,6,8,10,12,15,17,19,24},70] (* Harvey P. Dale, Jul 25 2018 *)

Formula

From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 9.
G.f.: x*(2*x^8 + x^5 - 3*x^4 + x^3 + 2*x^2 + 5*x + 1)/(x^4 - x^3 - x + 1). (End)

Extensions

Name clarified by David A. Corneth, Mar 13 2023

A003044 For n > 4, a(n) is the least integer > a(n-1) with precisely two representations a(n) = a(i) + a(j), 1 <= i < j < n; and a(n) = n for n=1..4.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 29, 31, 33, 43, 44, 47, 51, 54, 58, 68, 69, 78, 79, 86, 95, 99, 110, 113, 117, 133, 134, 135, 145, 151, 156, 159, 173, 180, 183, 193, 197, 204, 211, 229, 232, 236, 239, 243, 250, 256, 264, 270, 281, 284
Offset: 1

Views

Author

Keywords

Comments

First differs from A060470 at a(13) = 29. - Peter Munn, Dec 10 2017

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • R. K. Guy, Unsolved Problems in Number Theory, Section C4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A060470.

Programs

  • Haskell
    a003044 n = a003044_list !! (n-1)
    a003044_list = 1 : 2 : 3 : 4 : f [4,3..1] where
       f xs@(x:_) = y : f (y : xs) where
         y = head [w | w <- [x + 1 ..],
             length [() | v <- xs, (w - v) `elem` dropWhile (>= v) xs] == 2]
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    a[n_ /; n <= 4] = n; a[n_] := a[n] = Catch[ For[an = a[n-1] + 1, True, an++, cnt = 0; Do[If[an == a[i] + a[j], cnt++], {i, 1, n-1}, {j, i+1, n-1}]; If[cnt == 2, Throw[an]]]]; Table[a[n], {n, 1, 56}](* Jean-François Alcover, Apr 30 2012 *)

Extensions

Name edited by Michel Marcus, Dec 11 2017

A244750 0-additive sequence: a(n) is the smallest number larger than a(n-1) which is not the sum of any subset of earlier terms, with initial values {0, 2, 3, 4}.

Original entry on oeis.org

0, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 1

Views

Author

Keywords

Examples

			a(5) cannot be 5=2+3. It cannot be 6=2+4. It cannot be 7=3+4, and becomes a(5)=8.
a(6) cannot be 9=2+3+4. It cannot be 10=2+8. It cannot be 11=3+8. It cannot be 12 = 4+8. It cannot be 13=2+3+8. It cannot be 14=2+4+8. It cannot be 15=3+4+8, and becomes a(6)=16.
		

References

  • R. K. Guy, "s-Additive sequences," preprint, 1994.

Crossrefs

Programs

  • Maple
    A244750:= proc(n)
        option remember;
        if n <= 4 then
            op(n,[0,2,3,4]);
        else
            prev := {seq(procname(k),k=1..n-1)} ;
            for a from procname(n-1)+1 do
                awrks := true ;
                for asub in combinat[choose](prev) do
                    if add(p,p=asub) = a then
                        awrks := false;
                        break;
                    end if;
                end do:
                if awrks then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    for n from 1 do
        print(A244750(n)) ;
    end do: # R. J. Mathar, Jul 12 2014
  • Mathematica
     f[s_List] := f[n] = Block[{k = s[[-1]] + 1, ss = Union[Plus @@@ Subsets[s]]}, While[ MemberQ[ss, k], k++]; Append[s, k]]; Nest[ f[#] &, {0, 2, 3, 4}, 16]

Extensions

Corrected by R. J. Mathar, Jul 12 2014
Showing 1-6 of 6 results.