A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.
1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 11, 9, 1, 4, 13, 32, 53, 44, 1, 5, 21, 71, 181, 309, 265, 1, 6, 31, 134, 465, 1214, 2119, 1854, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496, 1, 9, 73, 527, 3333, 18089, 81901, 296967, 808393, 1468457, 1334961
Offset: 0
Examples
Triangle begins 1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 11, 9, 1, 4, 13, 32, 53, 44, ...
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- A. Laradji, and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75 (2007), 221-236. - _Abdullahi Umar_, Sep 14 2008
- L. Takacs, The Problem of Coincidences, Archive for History of Exact Sciences, Volume 21, No. 3, Sept. 1980. pp 229-244, paragraph 10 (Catalan).
Crossrefs
Programs
-
Magma
[[Factorial(k)*(&+[(-1)^j*Binomial(n-j, k-j)/Factorial(j): j in [0..k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2019
-
Maple
A060475 := proc(n,k): k! * add(binomial(n-j,k-j)*(-1)^j/j!, j=0..k) end: seq(seq(A060475(n,k), k=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011 T := (n,k) -> KummerU(-k, -n, -1): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..10); # Peter Luschny, Jul 07 2022
-
Mathematica
t[n_, k_] := k!*Sum[Binomial[n - j, k - j]*(-1)^j/j!, {j, 0, k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Aug 08 2011 *)
-
PARI
{T(n,k) = k!*sum(j=0,k, (-1)^j*binomial(n-j, k-j)/j!)}; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 04 2019
-
Sage
[[factorial(k)*sum((-1)^j*binomial(n-j, k-j)/factorial(j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 04 2019
Formula
T(n,k) = A047920(n,k)/(n-k)! = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) = (n-k+1)*T(n, k-1) - T(n-1,k-1).
From Abdullahi Umar, Sep 14 2008: (Start)
T(n,k) = k! * Sum_{j=0..k} C(n-j,k-j)*(-1)^j/j!.
C(n,k)*T(n,k) = A144089(n, k). (End)
T(n,k) = A076732(n+1,k+1)/(k+1). - Johannes W. Meijer, Jul 27 2011
E.g.f. as a square array: A(x,y) = exp(-x)/(1 - x - y) = (1 + y + y^2 + y^3 + ...) + (y + 2*y^2 + 3*y^3 + 4*y^4 + ...)*x + (1 + 3*y + 7*y^2 + 13*y^3 + ...)*x^2/2! + (2 + 11*y + 32*y^2 + 71*y^3 + ...)*x^3/3! + .... Observe that (1 - y)*A(x*(1 - y),y) = exp(x*(y - 1))/(1 - x) is the e.g.f. for A008290. - Peter Bala, Sep 25 2013
T(n, k) = KummerU(-k, -n, -1). - Peter Luschny, Jul 07 2022
Comments