A060482 New record highs reached in A060030.
1, 2, 3, 5, 9, 13, 21, 29, 45, 61, 93, 125, 189, 253, 381, 509, 765, 1021, 1533, 2045, 3069, 4093, 6141, 8189, 12285, 16381, 24573, 32765, 49149, 65533, 98301, 131069, 196605, 262141, 393213, 524285, 786429, 1048573, 1572861, 2097149, 3145725, 4194301, 6291453
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Crossrefs
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Programs
-
Mathematica
LinearRecurrence[{1,2,-2},{1,2,3,5,9},50] (* Harvey P. Dale, Sep 11 2016 *)
-
PARI
{ for (n=1, 1000, if (n%2==0, m=n/2; a=2^(m + 1) - 3, m=(n - 1)/2; a=3*2^m - 3); if (n<3, a=n); write("b060482.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 05 2009
Formula
a(n) = a(n-1) + 2^((n-1)/2) = 2*a(n-2) + 3 = a(n-1) + A016116(n-1) = A027383(n-1) - 1 = 2*A027383(n-3) + 1 = 4*A052955(n-4) + 1. a(2n) = 2^(n+1) - 3; a(2n+1) = 3*2^n - 3.
From Colin Barker, Jan 12 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) for n > 5.
G.f.: x*(2*x^4-x^2+x+1) / ((x-1)*(2*x^2-1)). (End)
E.g.f.: 1 + x + x^2/2 - 3*cosh(x) + 2*cosh(sqrt(2)*x) - 3*sinh(x) + 3*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Jul 25 2024