A060493 A diagonal of A036969.
0, 1, 21, 147, 627, 2002, 5278, 12138, 25194, 48279, 86779, 148005, 241605, 380016, 578956, 857956, 1240932, 1756797, 2440113, 3331783, 4479783, 5939934, 7776714, 10064110, 12886510, 16339635, 20531511, 25583481, 31631257, 38826012, 47335512, 57345288, 69059848
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
PARI
a(n)=n*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3)*(5*n - 1)/360
Formula
From Benoit Cloitre, Mar 20 2004: (Start)
a(n) = n*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3)*(5*n - 1)/360.
a(n) = Sum_{k=1..n} k^2 * Sum_{i=1..k} i^2.
a(n) = Sum_{k=1..n} k^2*A000330(k). (End)
G.f.: -x*(4*x^3+21*x^2+14*x+1) / (x-1)^7. - Colin Barker, Dec 19 2012
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+4) * binomial(2*n, n-j). - Peter Bala, Mar 31 2025
Extensions
Missing a(0)=0 inserted by Alois P. Heinz, Feb 19 2022