A060507 Denominators of the asymptotic expansion of the Airy function Ai(x).
1, 72, 3456, 746496, 214990848, 1719926784, 743008370688, 53496602689536, 10271347716390912, 6655833320221310976, 958439998111868780544, 23002559954684850733056
Offset: 0
Examples
a(2) = 3456 because for k=2, product((2*l+1),l=k..3*k-1)/216^k/k! = 385/3456 and we take the denominator of the fully canceled fraction.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- NIST's Digital Library of Mathematical Functions, Airy and Related Functions (Poincaré-Type Expansions) by Frank W. J. Olver.
Programs
-
Mathematica
a[ n_] := If[ n<0, 0, Denominator[ Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n]] (* Michael Somos, Oct 14 2011 *)
Formula
a(k)=denom(product((2*l+1), l=k..3*k-1)/216^k/k!).
Comments