cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062980 a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).

Original entry on oeis.org

1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, 202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500, 6383483988812390400000, 575440151532675686278125, 55318762960656722780160000
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001

Keywords

Comments

Number of rooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges). [Vidal]
Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a pointed set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point. [Vidal]
Also, the asymptotic expansion of the Airy function Ai'(x)/Ai(x) = -sqrt(x) - 1/(4x) + Sum_{n>=2} (-1)^n a(n) (4x)^ (1/2-3n/2). [Praehofer]
Maple 6 gives the wrong asymptotics of Ai'(x)=AiryAi(1,x) as x->oo apart from the 3rd term. Therefore asympt(AiryAi(1,x/4)/AiryAi(x/4),x); reproduces only the value a(1)=1 correctly.
Number of closed linear lambda terms (see [Bodini, Gardy, Jacquot, 2013] and [N. Zeilberger, 2015] references). - Pierre Lescanne, Feb 26 2017
Proved (bijection) by O. Bodini, D. Gardy, A. Jacquot (2013). - Olivier Bodini, Mar 30 2018
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
With interspersed zeros column 3 of A380622.
Pointed version of A129114.
Connected pointed version of A129115.

Programs

  • Haskell
    a062980 n = a062980_list !! n
    a062980_list = 1 : 5 : f 2 [5,1] where
       f u vs'@(v:vs) = w : f (u + 1) (w : vs') where
         w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)
         vs_ = init vs
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* Jean-François Alcover, Oct 09 2012, from Airy function asymptotics *)
    a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Reshetnikov *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 09 2017

Formula

With offset 1, then a(1) = 1 and, for n > 1, a(n) = (6*n-8)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k) [Praehofer] [Martin and Kearney].
a(n) = (6/Pi^2)*Integral_{x=0..oo} ((4*x)^(3*n/2)/(Ai(x)^2 + Bi(x)^2)) dt. - Vladimir Reshetnikov, Sep 24 2013
a(n) ~ 3 * 6^n * n! / Pi. - Vaclav Kotesovec, Jan 19 2015
0 = 6*x^2*y' + x*y^2 + (4*x-1)*y + 1, where y(x) = Sum_{n>=0} a(n)*x^n. - Gheorghe Coserea, Apr 02 2017
From Peter Bala, May 21 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... See Stokes.
x*A(x) = B(x)/(1 + 2*B(x)), where B(x) = x + 7*x^2 + 84*x^3 + 1463*x^4 + ... is the o.g.f. of A172455.
A(x) = 1/(1 + 2*x - 7*x/(1 - 5*x/(1 - 13*x/(1 - 11*x/(1 - ... - (6*n + 1)*x/(1 - (6*n - 1)*x/(1 - .... (End)

Extensions

Entry revised by N. J. A. Sloane based on comments from Samuel A. Vidal, Mar 30 2007

A014402 Numbers found in denominators of expansion of Airy function Ai(x).

Original entry on oeis.org

1, 1, 6, 12, 180, 504, 12960, 45360, 1710720, 7076160, 359251200, 1698278400, 109930867200, 580811212800, 46170964224000, 268334780313600, 25486372251648000, 161000868188160000, 17891433320656896000, 121716656350248960000, 15565546988971499520000, 113196490405731532800000
Offset: 0

Views

Author

Keywords

Comments

Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - Clark Kimberling, Jan 02 2012

Examples

			Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ...
		

Crossrefs

Programs

  • Magma
    A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
    [A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
    
  • Mathematica
    Series[ AiryAi[ x ], {x, 0, 30} ]
    a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *)
    (* Next, A014402 generated in via Vandermonde determinants based on A007494 *)
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* this sequence *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
    (* Clark Kimberling, Jan 02 2012 *)
  • PARI
    {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
    
  • SageMath
    def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
    [A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - Michael Somos, Oct 14 2011

A060506 Numerators of the asymptotic expansion of the Airy function Ai(x).

Original entry on oeis.org

1, 5, 385, 425425, 1301375075, 188699385875, 2252127170418125, 6344885703973691875, 64115070038654156396875, 2830616227136542350765634375, 34904328696820703727291037478125, 88069967543659875631905704109578125
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001

Keywords

Comments

The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x) ~ (Pi^(-1/2)/2)*x^(-1/4)*exp(-z)*(Sum_{k>=0} (-1)^k*c(k)*z^(-k)), where z = (2/3)*x^(3/2). a(k) is the numerator of the fully canceled c(k).

Examples

			a(2)=385 because for n=2, (Product_{k=1..3*n-1} (2*k+1))/(216^n*n!) = 385/3456 and we take the numerator of the fully canceled fraction.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Cf. A060507.

Programs

  • Mathematica
    a[ n_] := Numerator[Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n] (* Michael Somos, Oct 14 2011 *)

Formula

a(n) = numerator((Product_{k=1..3*n-1} (2*k+1))/(216^n*n!)). [Corrected by Sean A. Irvine, Nov 26 2022]
Showing 1-3 of 3 results.