cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A176730 Denominators of coefficients of a series, called f, related to Airy functions.

Original entry on oeis.org

1, 6, 180, 12960, 1710720, 359251200, 109930867200, 46170964224000, 25486372251648000, 17891433320656896000, 15565546988971499520000, 16437217620353903493120000, 20710894201645918401331200000, 30693545206839251070772838400000, 52854284846177190343870827724800000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

The numerators are always 1.
Let f(z) = Sum_{n>=0} (1/a(n))*z^(3*n) and g(z) = Sum_{n>=0}(1/b(n))*z^(3*n+1) with b(n) = A176731(n) build the two independent Airy functions Ai(z) = c[1]*f(z) - c[2]*g(z) and Bi(z) = sqrt(3)*(c[1]*f(z) + c[2]*g(z)) with c[1] = 1/(3^(2/3)*Gamma(2/3)), approximately 0.35502805388781723926 and c[2] = 1/(3^(1/3)*Gamma(1/3)), approximately 0.25881940379280679840.
If y = Sum_{n >= 0} x^(3*n)/a(n), then y'' = x*y. - Michael Somos, Jul 12 2019
Define W(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(a(n)*(3*n+1)). Then W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. The function 1/W(z) is the e.g.f. of A117226, which is the number of permutations of [n] avoiding the consecutive pattern 1243. In other words, Sum_{n >= 0} A117226(n)*z^n/n! = 1/W(z). See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003). - Petros Hadjicostas, Nov 01 2019
If y = Sum_{n >= 0} a(n)*x^(3*n+1)/(3*n+1)!, then y' = 1 + x^2*y. - Michael Somos, May 22 2022

Examples

			Rational f-coefficients: 1, 1/6, 1/180, 1/12960, 1/1710720, 1/359251200, 1/109930867200, 1/46170964224000, ....
		

Crossrefs

Column k=3 of A329070.

Programs

  • Maple
    a := proc (n) option remember; if n = 0 then 1 else 3*n*(3*n-1)*a(n-1) end if; end proc: seq(a(n), n = 0..20); # Peter Bala, Dec 13 2021
  • Mathematica
    a[ n_] := If[ n < 0, 0, 1 / (3^(2/3) Gamma[2/3] SeriesCoefficient[ AiryAi[x], {x, 0, 3*n}])]; (* Michael Somos, Oct 14 2011 *)
    a[ n_] := If[ n < 0, 0, (3*n)! / Product[ k, {k, 1, 3*n - 2, 3}]]; (* Michael Somos, Oct 14 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / prod( k=0, n-1, 3*k + 1))}; /* Michael Somos, Oct 14 2011 */

Formula

a(n) = denominator((3^n)*risefac(1/3,n)/(3*n)!) with the rising factorials risefac(k,n) = Product_{j=0..n-1} (k+j) and risefac(k,0)=1.
From Peter Bala, Dec 13 2021: (Start)
a(n) = 3*n*(3*n - 1)*a(n-1) with a(0) = 1.
a(n) = (3*n + 1)!/(n!*3^n)*Sum_{k = 0..n} (-1)^k*binomial(n,k)/(3*k + 1).
a(n) = (3*n + 1)!/(n!*3^n)*hypergeom([-n, 1/3], [4/3], 1).
a(n) = (2*Pi*sqrt(3))/9 * 1/(3^n) * Gamma(3*n+2)/(Gamma(2/3)*Gamma(n+4/3)).
(End)
a(n) = (9^n*n!*(n-1/3)!)/(-1/3)!. - Peter Luschny, Dec 20 2021
a(n) = A014402(2*n). - Michael Somos, May 22 2022

A203433 Vandermonde determinant of the first n terms of (2,3,5,6,8,9,...) = (j+floor((j+1)/2)).

Original entry on oeis.org

1, 1, 6, 72, 12960, 6531840, 84652646400, 3839844040704000, 6568897997313146880000, 46482573252667397426380800000, 16698920220108665726304214056960000000, 28359415513133792655802758561911537664000000000
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Comments

Each term divides its successor, as in A014402, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203434.

Crossrefs

Programs

  • Magma
    A203433:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor(k/2)-Floor(j/2): j in [0..k-1]]) : k in [1..n-1]]) >;
    [A203433(n): n in [1..25]]; // G. C. Greubel, Sep 20 2023
    
  • Mathematica
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* this sequence *)
    Table[v[n+1]/v[n], {n,z}]      (* A014402 *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
  • SageMath
    def A203433(n): return product(product(k-j+(k//2)-(j//2) for j in range(k)) for k in range(1,n))
    [A203433(n) for n in range(1,31)] # G. C. Greubel, Sep 20 2023

A060507 Denominators of the asymptotic expansion of the Airy function Ai(x).

Original entry on oeis.org

1, 72, 3456, 746496, 214990848, 1719926784, 743008370688, 53496602689536, 10271347716390912, 6655833320221310976, 958439998111868780544, 23002559954684850733056
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001

Keywords

Comments

The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x)~pi^(-1/2)/2*x^(-1/4)*exp(-z)*sum((-1)^k*c(k)*z^(-k),k=0..infinity), where z=2/3*x^(3/2). a(k) is the denominator of the fully canceled c(k).

Examples

			a(2) = 3456 because for k=2, product((2*l+1),l=k..3*k-1)/216^k/k! =  385/3456 and we take the denominator of the fully canceled fraction.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n<0, 0, Denominator[ Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n]] (* Michael Somos, Oct 14 2011 *)

Formula

a(k)=denom(product((2*l+1), l=k..3*k-1)/216^k/k!).

A203434 a(n) = A203433(n)/A000178(n) where A000178=(superfactorials).

Original entry on oeis.org

1, 1, 3, 6, 45, 189, 3402, 30618, 1299078, 25332021, 2507870079, 106698472452, 24487299427734, 2283997201168644, 1209640056157393380, 248218139523497121576, 302358334494179897593596, 136861610819571430116630660
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
    f:= func< k | (&*[k+1-j+Floor((k+2)/2)-Floor((j+1)/2): j in [1..k]]) >;
    [1] cat [(&*[f(k): k in [1..n-1]])/Barnes(n): n in [2..20]]; // G. C. Greubel, Sep 19 2023
    
  • Mathematica
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* A014402 *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
  • SageMath
    def barnes(n): return product(factorial(j) for j in range(n))
    def f(k): return product(k-j+(k//2)-(j//2) for j in range(k))
    [product(f(k) for k in range(1, n) )//barnes(n) for n in range(1,31)] # G. C. Greubel, Sep 19 2023

A014403 Numbers found in denominators of expansion of Airy function Bi(x).

Original entry on oeis.org

1, 1, 6, 4, 180, 168, 12960, 15120, 1710720, 2358720, 359251200, 566092800, 109930867200, 193603737600, 46170964224000, 89444926771200, 25486372251648000, 53666956062720000
Offset: 0

Views

Author

Keywords

Comments

Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.

Examples

			Mathematica gives the series as 1/(3^(1/6)*Gamma(2/3)) + 3^(1/6)*x/Gamma(1/3) + x^3/(6*3^(1/6)*Gamma(2/3)) + x^4/(4*3^(5/6)*Gamma(1/3)) + x^6/(180*3^(1/6)*Gamma(2/3)) + x^7/(168*3^(5/6)*Gamma(1/3)) + x^9/(12960*3^(1/6)*Gamma(2/3)) + ...
		

Crossrefs

Cf. A014402.

Programs

  • Mathematica
    Series[ AiryBi[ x ], {x, 0, 30} ]

A385253 Decimal expansion of the function AiryAi(x) at x=1.

Original entry on oeis.org

1, 3, 5, 2, 9, 2, 4, 1, 6, 3, 1, 2, 8, 8, 1, 4, 1, 5, 5, 2, 4, 1, 4, 7, 4, 2, 3, 5, 1, 5, 4, 6, 6, 3, 0, 6, 1, 7, 4, 9, 4, 4, 1, 4, 2, 9, 8, 8, 3, 3, 0, 7, 0, 6, 0, 0, 9, 1, 0, 2, 0, 5, 4, 7, 5, 7, 6, 3, 3, 5, 3, 4, 8, 0, 2, 2, 6, 5, 7, 2, 3, 6, 6, 3, 4, 8, 7, 1, 0, 9, 9, 0, 8, 7, 4, 8, 6, 8, 3, 2, 1, 3, 0, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Jul 29 2025

Keywords

Comments

Second derivative at x=1 has that same value.

Examples

			0.1352924163128814155241474235154663...
		

Crossrefs

Programs

  • Maple
    AiryAi(1) ; evalf(%) ; # R. J. Mathar, Jul 31 2025
  • Mathematica
    RealDigits[AiryAi[1], 10, 105][[1]]
  • PARI
    airy(1)[1] \\ Michel Marcus, Jul 29 2025

Formula

Equals AiryAi''(1).
Showing 1-6 of 6 results.