cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A117226 Number of permutations of [n] avoiding the consecutive pattern 1243.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 630, 4204, 32054, 274914, 2619692, 27459344, 313990182, 3889585408, 51888955808, 741668212080, 11307669002720, 183174676857608, 3141820432768752, 56882461258572976, 1084056190235653304, 21692744773505849952, 454758269790599361968
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1243. It is the same as the number of permutations which avoid 3421, 4312 or 2134.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
          add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    A[x_]:=Integrate[AiryAi[ -t],{t,0,x}]; B[x_]:=Integrate[AiryBi[ -t],{t,0,x}];
    c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
    a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1),{x,0,n}]*n!; Table[a[n],{n,0,10}] (* fixed by Vaclav Kotesovec, Aug 23 2014 *)
    (* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t],{t,0,x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t],{t,0,x}]==1,{x,1},WorkingPrecision->50] (* Vaclav Kotesovec, Aug 23 2014 *)

Formula

a(n) ~ c * d^n * n!, where d = 0.952891423325053197208702817349165942637814..., c = 1.169657787464830219717093446929792145316... . - Vaclav Kotesovec, Aug 23 2014
From Petros Hadjicostas, Nov 01 2019: (Start)
E.g.f.: 1/W(z), where W(z) := 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(b(n)*(3*n+1)) with b(n) = A176730(n) = (3*n)!/(3^n*(1/3)_n). (Here (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol, or rising factorial, which is denoted by (x)^n in some papers and books.) The function W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. [See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003).]
a(n) = Sum_{m = 0..floor((n-1)/3)} (-3)^m * (1/3)_m * binomial(n, 3*m+1) * a(n-3*m-1) for n >= 1 with a(0) = 1. (End)

A014402 Numbers found in denominators of expansion of Airy function Ai(x).

Original entry on oeis.org

1, 1, 6, 12, 180, 504, 12960, 45360, 1710720, 7076160, 359251200, 1698278400, 109930867200, 580811212800, 46170964224000, 268334780313600, 25486372251648000, 161000868188160000, 17891433320656896000, 121716656350248960000, 15565546988971499520000, 113196490405731532800000
Offset: 0

Views

Author

Keywords

Comments

Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - Clark Kimberling, Jan 02 2012

Examples

			Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ...
		

Crossrefs

Programs

  • Magma
    A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
    [A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
    
  • Mathematica
    Series[ AiryAi[ x ], {x, 0, 30} ]
    a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *)
    (* Next, A014402 generated in via Vandermonde determinants based on A007494 *)
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* this sequence *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
    (* Clark Kimberling, Jan 02 2012 *)
  • PARI
    {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
    
  • SageMath
    def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
    [A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - Michael Somos, Oct 14 2011

A329070 Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1
Offset: 0

Views

Author

Petros Hadjicostas, Nov 03 2019

Keywords

Comments

For information about the function W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)) (mentioned in the Formula section below), see Theorem 3.2 in Elizalde and Noy (2003) with u = 0 and m and a in the theorem equal to our m + 1. See also the documentation of array A327722.
By using the ratio test and the Stirling approximation to the gamma function, we may show that the radius of convergence of the power series for W_m(z) is infinity (for each m >= 0). Thus, the function W_m(z) (as defined by the above power series) is entire.
If we define S(m,s) = T(n-s, s+1) for m >= 0 and 0 <= s <= m, we get the triangular array that appears in the Example section below.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
  1,  1,     1,        1,           1,              1,  ...
  1,  2,     6,       24,         120,            720,  ...
  1,  8,   180,     8064,      604800,       68428800, ...
  1, 48, 12960, 10644480, 19813248000, 70355755008000, ...
  ...
Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0):
  1;
  1,     1;
  1,     2,         1;
  1,     8,         6,           1;
  1,    48,       180,          24,           1;
  1,   384,     12960,        8064,         120,        1;
  1,  3840,   1710720,    10644480,      604800,      720,    1;
  1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1;
  ...
		

Crossrefs

Rows include A000012 (n = 0), A000142 (n = 1), A060593 (n = 2).
Columns include A000012 (k = 1), A000165 (k = 2), A176730 (k = 3).
Ratios T(n+1,k)/(k!*T(n,k)) include A000012 (k = 1), A000027 (k = 2), A000326 (k = 3), A100157 (k = 4), A234043 (k = 5).

Programs

  • Maple
    A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)):
    seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019

Formula

T(0,k) = 1, T(1,k) = k!, and T(2,k) = (2*k)!/(k + 1) for k >= 1.
T(n,1) = 1, T(n,2) = (2*n)!!, and T(n,3) is related to the Airy functions (see the documentation of A176730).
T(n+1,k) = (k-1)! * binomial(k*(n+1), k-1) * T(n,k) for n >= 0 and k >= 1.
T(n+1,k)/(k! * T(n,k)) = Cat(n+1, k), where Cat(d, k) = binomial(k*d, k)/(k * (d - 1) + 1) is a Fuss-Catalan number; see Theorem 1.2 in Schuetz and Whieldon (2014).
If F(k,z) = Sum_{n >= 0} z^(k*n)/T(n,k), then F(k,z) satisfies the o.d.e. F^(k-1)(k,z) - z*F(k,z) = 0.
If W_m(z) = 1 + Sum_{n >= 0} (-1)^(n+1)* z^((m+2)*n + 1)/(T(n, m+2)*((m + 2)*n + 1)), then 1/W_m(z) is the e.g.f. of row m of A327722(m,n), which counts permutations of [n] that avoid the consecutive pattern 12...(m+1)(m+3)(m+2) (or equivalently, the consecutive pattern (m+3)(m+2)...(3)(1)(2)).
The function W_m(z) satisfies the o.d.e. W_m^(m+2)(z) + z*W_m'(z) = 0 with W_m(0) = 1, W_m'(0) = -1, and W_m^(s)(0) = 0 for s = 2..(m + 1).

A176731 Denominators of coefficients of a series, called g, related to Airy functions.

Original entry on oeis.org

1, 12, 504, 45360, 7076160, 1698278400, 580811212800, 268334780313600, 161000868188160000, 121716656350248960000, 113196490405731532800000, 127006462235230779801600000, 169172607697327398695731200000, 263909268007830741965340672000000, 476620138022142319989405253632000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

The numerators are always 1.
f(z) := Sum_{n>=0} (1/b(n)) * z^(3*n) with b(n) := A176730(n) and g(z) := Sum_{n>=0} (1/a(n)) * z^(3*n+1) build the two independent Airy functions Ai(z) = c(1)*f(z) - c(2)*g(z) and Bi(z) = sqrt(3) * (c(1)*f(z) + c(2)*g(z)) with c(1) := 1/(3^(2/3) * Gamma(2/3)), approximately 0.35502805388781723926, and c(2) := 1/(3^(1/3) * Gamma(1/3)), approximately 0.25881940379280679840.
If y := Sum_{n >= 0} x^(3*n+1)/a(n), then y'' = x*y. - Michael Somos, Jul 12 2019

Examples

			Rational g-coefficients: [1, 1/12, 1/504, 1/45360, 1/7076160, 1/1698278400, 1/580811212800, 1/268334780313600, ...].
		

Crossrefs

Cf. A176730.

Programs

  • Maple
    a := proc (n) option remember; if n = 0 then 1 else 3*n*(3*n+1)*a(n-1) end if; end proc: seq(a(n), n = 0..20); # Peter Bala, Dec 17 2021
  • Mathematica
    a[ n_] := If[ n < 0, 0, -1 / (3^(1/3) Gamma[ 1/3] SeriesCoefficient[ AiryAi[ x], {x, 0, 3 n + 1}])]; (* Michael Somos, Oct 14 2011 *)
    a[ n_] := If[ n < 0, 0, (3 n + 1)! / Product[ k, {k, 2, 3 n + 1, 3}]]; (* Michael Somos, Oct 14 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n + 1)! / prod( k=0, n-1, 3*k + 2))}; /* Michael Somos, Oct 14 2011 */

Formula

a(n) = denominator((3^n) * risefac(2/3, n)/(3*n + 1)!) with the rising factorials risefac(k, n) := Product_{j=0..(n-1)} (k+j) and risefac(k, 0) = 1.
From Peter Bala, Dec 17 2021: (Start)
a(n) = 3*n*(3*n + 1)*a(n-1) with a(0) = 1.
a(n) = (3*n + 2)!/(n!*3^n)*Sum_{k = 0..n} (-1)^k*binomial(n,k)/(3*k + 2).
a(n) = (1/2)*(3*n + 2)!/(n!*3^n)*hypergeom([-n, 2/3], [5/3], 1).
a(n) = (2*Pi*sqrt(3))/9 *(1/3^(n+1))*Gamma(3*n+4)/( (n+1)*Gamma(1/3)* Gamma(n + 5/3) ). (End)
a(n) = (9^n*n!*(n + 1/3)!)/(1/3)!. - Peter Luschny, Dec 20 2021

A385253 Decimal expansion of the function AiryAi(x) at x=1.

Original entry on oeis.org

1, 3, 5, 2, 9, 2, 4, 1, 6, 3, 1, 2, 8, 8, 1, 4, 1, 5, 5, 2, 4, 1, 4, 7, 4, 2, 3, 5, 1, 5, 4, 6, 6, 3, 0, 6, 1, 7, 4, 9, 4, 4, 1, 4, 2, 9, 8, 8, 3, 3, 0, 7, 0, 6, 0, 0, 9, 1, 0, 2, 0, 5, 4, 7, 5, 7, 6, 3, 3, 5, 3, 4, 8, 0, 2, 2, 6, 5, 7, 2, 3, 6, 6, 3, 4, 8, 7, 1, 0, 9, 9, 0, 8, 7, 4, 8, 6, 8, 3, 2, 1, 3, 0, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Jul 29 2025

Keywords

Comments

Second derivative at x=1 has that same value.

Examples

			0.1352924163128814155241474235154663...
		

Crossrefs

Programs

  • Maple
    AiryAi(1) ; evalf(%) ; # R. J. Mathar, Jul 31 2025
  • Mathematica
    RealDigits[AiryAi[1], 10, 105][[1]]
  • PARI
    airy(1)[1] \\ Michel Marcus, Jul 29 2025

Formula

Equals AiryAi''(1).
Showing 1-5 of 5 results.