cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014402 Numbers found in denominators of expansion of Airy function Ai(x).

Original entry on oeis.org

1, 1, 6, 12, 180, 504, 12960, 45360, 1710720, 7076160, 359251200, 1698278400, 109930867200, 580811212800, 46170964224000, 268334780313600, 25486372251648000, 161000868188160000, 17891433320656896000, 121716656350248960000, 15565546988971499520000, 113196490405731532800000
Offset: 0

Views

Author

Keywords

Comments

Although the description is technically correct, this sequence is unsatisfactory because there are gaps in the series.
A014402 arises via Vandermonde determinants as in A203433; see the Mathematica section. - Clark Kimberling, Jan 02 2012

Examples

			Mathematica gives the series as 1/(3^(2/3)*Gamma(2/3)) - x/(3^(1/3)*Gamma(1/3)) + x^3/(6*3^(2/3)*Gamma(2/3)) - x^4/(12*3^(1/3)*Gamma(1/3)) + x^6/(180*3^(2/3)*Gamma(2/3)) - x^7/(504*3^(1/3)*Gamma(1/3)) + x^9/(12960*3^(2/3)*Gamma(2/3)) - ...
		

Crossrefs

Programs

  • Magma
    A014402:= func< n | n eq 0 select 1 else (&*[n-j+Floor(n/2)-Floor(j/2): j in [0..n-1]]) >;
    [A014402(n): n in [0..25]]; // G. C. Greubel, Sep 20 2023
    
  • Mathematica
    Series[ AiryAi[ x ], {x, 0, 30} ]
    a[ n_] := If[ n<0, 0, (n + Quotient[ n, 2])! / Product[ 3 k + 1 + Mod[n, 2], {k, 0, Quotient[ n, 2] - 1}]]; (* Michael Somos, Oct 14 2011 *)
    (* Next, A014402 generated in via Vandermonde determinants based on A007494 *)
    f[j_]:= j + Floor[(j+1)/2]; z = 20;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,z}]             (* A203433 *)
    Table[v[n+1]/v[n], {n,z}]      (* this sequence *)
    Table[v[n]/d[n], {n,z}]        (* A203434 *)
    (* Clark Kimberling, Jan 02 2012 *)
  • PARI
    {a(n) = if( n<0, 0, (n\2 + n)! / prod( k=0, n\2 -1, n%2 + 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
    
  • SageMath
    def A014402(n): return product(n-j+(n//2)-(j//2) for j in range(n))
    [A014402(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(2*n) = A176730(n). a(2*n + 1) = A176731(n). - Michael Somos, Oct 14 2011

A060507 Denominators of the asymptotic expansion of the Airy function Ai(x).

Original entry on oeis.org

1, 72, 3456, 746496, 214990848, 1719926784, 743008370688, 53496602689536, 10271347716390912, 6655833320221310976, 958439998111868780544, 23002559954684850733056
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Mar 22 2001

Keywords

Comments

The series arises in the asymptotic expansion of the Airy function A(x) for large |x| as Ai(x)~pi^(-1/2)/2*x^(-1/4)*exp(-z)*sum((-1)^k*c(k)*z^(-k),k=0..infinity), where z=2/3*x^(3/2). a(k) is the denominator of the fully canceled c(k).

Examples

			a(2) = 3456 because for k=2, product((2*l+1),l=k..3*k-1)/216^k/k! =  385/3456 and we take the denominator of the fully canceled fraction.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n<0, 0, Denominator[ Product[k, {k, 1, 6 n - 1, 2}] / n! / 216^n]] (* Michael Somos, Oct 14 2011 *)

Formula

a(k)=denom(product((2*l+1), l=k..3*k-1)/216^k/k!).
Showing 1-2 of 2 results.