A060531 9th binomial transform of (1,0,1,0,1,...), A059841.
1, 9, 82, 756, 7048, 66384, 631072, 6048576, 58388608, 567108864, 5536870912, 54294967296, 534359738368, 5274877906944, 52199023255552, 517592186044416, 5140737488355328, 51125899906842624, 509007199254740992, 5072057594037927936, 50576460752303423488
Offset: 0
Examples
For n = 1 there are 9 strings: {1 2 3 4 5 6 7 8 9}; for n = 2 there are 82: {00 11 12 13 14 15 16 17 18 19 21 ... 96 97 98 99}.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (18,-80).
Programs
-
Magma
[(8^n+10^n)/2: n in [0..20]]; // Vincenzo Librandi, Jul 18 2017
-
Maple
A060531 := proc(n) option remember: if n = 1 then RETURN(9) fi: 8*A060531(n-1) + 10^(n-1): end: for n from 1 to 40 do printf(`%d,`, A060531(n)) od:
-
Mathematica
Table[8^n/2 + 10^n/2, {n, 0, 19}] (* or *) LinearRecurrence[{18, -80}, {1, 9}, 19] (* or *) CoefficientList[Series[(1 - 9 x)/((1 - 8 x) (1 - 10 x)), {x, 0, 19}], x] (* Michael De Vlieger, Jul 17 2017 *)
-
PARI
a(n) = { (8^n + 10^n)/2 } \\ Harry J. Smith, Jul 06 2009
Formula
G.f.: (1 - 9*x)/((1 - 8*x)*(1 -10*x)).
E.g.f.: exp(9*x)*cosh(x).
a(n) = (8^n + 10^n)/2 = 2^(n-1)*(4^n + 5^n).
a(n) = 18*a(n-1) - 80*a(n-2), a(0) = 1, a(1) = 9.
a(n) = 8*a(n-1) + 10^(n-1), a(1) = 9.
Extensions
Additional comments from Paul Barry, Mar 11 2003
Typo in definition corrected by Paolo P. Lava, Sep 18 2008
Edited by and new name from Wolfdieter Lang, Jul 18 2017
Comments