cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060531 9th binomial transform of (1,0,1,0,1,...), A059841.

Original entry on oeis.org

1, 9, 82, 756, 7048, 66384, 631072, 6048576, 58388608, 567108864, 5536870912, 54294967296, 534359738368, 5274877906944, 52199023255552, 517592186044416, 5140737488355328, 51125899906842624, 509007199254740992, 5072057594037927936, 50576460752303423488
Offset: 0

Views

Author

N. J. A. Sloane, Apr 12 2001

Keywords

Comments

Binomial transform of A081190.
Number of strings of length n of the decimal digits 0..9 that contain an even number of 0's.
An equivalent formulation is: a(n) is also the number of words of length n over an alphabet of ten letters with a chosen letter appearing an even number of times. See a comment in A007582, also for the cross references for the 1- to 11-letter word cases. - Wolfdieter Lang, Jul 17 2017

Examples

			For n = 1 there are 9 strings: {1 2 3 4 5 6 7 8 9};
for n = 2 there are 82: {00 11 12 13 14 15 16 17 18 19 21 ... 96 97 98 99}.
		

Crossrefs

Programs

  • Magma
    [(8^n+10^n)/2: n in [0..20]]; // Vincenzo Librandi, Jul 18 2017
  • Maple
    A060531 := proc(n) option remember: if n = 1 then RETURN(9) fi: 8*A060531(n-1) + 10^(n-1): end: for n from 1 to 40 do printf(`%d,`, A060531(n)) od:
  • Mathematica
    Table[8^n/2 + 10^n/2, {n, 0, 19}] (* or *)
    LinearRecurrence[{18, -80}, {1, 9}, 19] (* or *)
    CoefficientList[Series[(1 - 9 x)/((1 - 8 x) (1 - 10 x)), {x, 0, 19}], x] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = { (8^n + 10^n)/2 } \\ Harry J. Smith, Jul 06 2009
    

Formula

G.f.: (1 - 9*x)/((1 - 8*x)*(1 -10*x)).
E.g.f.: exp(9*x)*cosh(x).
a(n) = (8^n + 10^n)/2 = 2^(n-1)*(4^n + 5^n).
a(n) = 18*a(n-1) - 80*a(n-2), a(0) = 1, a(1) = 9.
a(n) = 8*a(n-1) + 10^(n-1), a(1) = 9.

Extensions

Additional comments from Paul Barry, Mar 11 2003
Typo in definition corrected by Paolo P. Lava, Sep 18 2008
Edited by and new name from Wolfdieter Lang, Jul 18 2017