A081191 Duplicate of A060531.
1, 9, 82, 756, 7048, 66384, 631072, 6048576, 58388608, 567108864, 5536870912
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: 1; 0, 1; 0, 1, 0; 1, 0, 1, 0; 1, 0, 1, 0, 1; 0, 1, 0, 1, 0, 1; 0, 1, 0, 1, 0, 1, 0; 1, 0, 1, 0, 1, 0, 1, 0; 1, 0, 1, 0, 1, 0, 1, 0, 1; 0, 1, 0, 1, 0, 1, 0, 1, 0, 1; 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0; ...
a059841 n = (1 -) . (`mod` 2) a059841_list = cycle [1,0] -- Reinhard Zumkeller, May 05 2012, Dec 30 2011
[0^(n mod 2): n in [0..100]]; // Vincenzo Librandi, Nov 09 2014
seq(1-modp(n,2), n=0..150); # Muniru A Asiru, Apr 05 2018
CoefficientList[Series[1/(1 - x^2), {x, 0, 104}], x] (* or *) Array[1/2 + (-1)^#/2 &, 105, 0] (* Michael De Vlieger, Feb 19 2019 *) Table[QBinomial[n, 1, -1], {n, 1, 74}] (* John Keith, Jun 28 2021 *) PadRight[{},120,{1,0}] (* Harvey P. Dale, Mar 06 2023 *)
a(n)=(n+1)%2; \\ or 1-n%2 as in NAME.
A059841(n)=!bittest(n,0) \\ M. F. Hasler, Jan 13 2012
def A059841(n): return 1 - (n & 1) # Chai Wah Wu, May 25 2022
[Binomial(2^n + 1, 2) : n in [0..30]]; // Wesley Ivan Hurt, Jul 03 2020
seq(binomial(-2^n, 2), n=0..23); # Zerinvary Lajos, Feb 22 2008
Table[ Binomial[2^n + 1, 2], {n, 0, 23}] (* Robert G. Wilson v, Jul 30 2004 *) LinearRecurrence[{6,-8},{1,3},30] (* Harvey P. Dale, Apr 08 2013 *)
A007582(n):=2^(n-1)*(1+2^n)$ makelist(A007582(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
a(n)=if(n<0,0,2^(n-1)*(1+2^n))
a(n)=sum(k=-n\4,n\4,binomial(2*n+1,n+1+4*k))
Triangle begins 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1 p[0](x) = 1 p[1](x) = x p[2](x) = 1 + x^2 p[3](x) = 3*x + x^3 p[4](x) = 1 + 6*x^2 + x^4 p[5](x) = 5*x + 10*x^3 + x^5 Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \/1 \/1 \ /1 \ |0 1 ||0 1 ||0 1 | |0 1 | |1 0 1 ||0 0 1 ||0 0 1 |... = |1 0 1 | |0 3 0 1 ||0 1 0 1 ||0 0 0 1 | |0 4 0 1 | |1 0 6 0 1||0 0 3 0 1||0 0 1 0 1| |1 0 10 0 1| |... ||... ||... | |... | - _Peter Bala_, Jul 28 2014
a119467 n k = a119467_tabl !! n !! k a119467_row n = a119467_tabl !! n a119467_tabl = map (map (flip div 2)) $ zipWith (zipWith (+)) a007318_tabl a130595_tabl -- Reinhard Zumkeller, Mar 23 2014
/* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
# Polynomials: p_n(x) p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end; # Coefficients: a(n) seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *) n = 15; "n-th row" mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}]; mat[[1, 2]] = 1; mat[[n + 1, n]] = 1; For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ]; For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n]; mat // MatrixForm; P2 = Dot[mat, mat]; R1 = Simplify[ Eigenvectors[Transpose[P2]][[1]]/ Total[Eigenvectors[Transpose[P2]][[1]]]] R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}] odd = R2*2^(n - 1) (* _Luca Onnis *)
@CachedFunction def A119467_poly(n): R = PolynomialRing(ZZ, 'x') x = R.gen() return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2)) def A119467_row(n): return list(A119467_poly(n)) for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
[2^n*(5^(n+1)-4^(n+1)): n in [0..40]]; // G. C. Greubel, Nov 14 2024
Rest@With[{m=30}, CoefficientList[Series[Exp[9 x] Sinh[x], {x,0,m}], x]*Range[0, m]!] Table[2^n*(5^(n+1)-4^(n+1)), {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *) LinearRecurrence[{18,-80},{1,18},30] (* Harvey P. Dale, Aug 26 2019 *)
Vec(1/((1-8*x)*(1-10*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
A016186=BinaryRecurrenceSequence(18,-80,1,18) print([A016186(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024
[7^n/2 + 9^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
CoefficientList[Series[(1 - 8 x) / ((1 - 7 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *) LinearRecurrence[{16,-63},{1,8},20] (* Harvey P. Dale, Apr 04 2017 *)
[9^n/2 + 11^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
A081192:=n->9^n/2 + 11^n/2: seq(A081192(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
CoefficientList[Series[(1-10x)/((1-9x)(1-11x)),{x,0,200}],x] (* Vincenzo Librandi, Aug 07 2013 *)
Comments