A060603 Number of ways of expressing an n-cycle in the symmetric group S_n as a product of n+1 transpositions.
0, 1, 27, 640, 15625, 408240, 11529602, 352321536, 11622614670, 412500000000, 15692141883605, 637501182050304, 27561634699895023, 1263990776407224320, 61305144653320312500, 3135946492530623774720, 168757013424812699892108
Offset: 1
Keywords
Examples
a(2) = 1 because in S_2 the only way to write (12) as a product of 3 transpositions is (12) = (12)(12)(12).
Links
- Harry J. Smith, Table of n, a(n) for n = 1..200
- D. M. Jackson, Some Combinatorial Problems Associated with Products of Conjugacy Classes of the Symmetric Group, Journal of Combinatorial Theory, Series A, 49 363-369(1988).
Programs
-
Maple
for n from 1 to 30 do printf(`%d,`,1/24 * (n^2 - 1) * n^(n + 1)) od:
-
PARI
a(n)={(n^2 - 1) * n^(n + 1)/24} \\ Harry J. Smith, Jul 07 2009
Formula
a(n) = (1/24) * (n^2 - 1) * n^(n + 1).
Extensions
More terms from James Sellers, Apr 13 2001
Comments