A060626 Number of right triangles of a given area required to form successively larger squares.
2, 14, 34, 62, 98, 142, 194, 254, 322, 398, 482, 574, 674, 782, 898, 1022, 1154, 1294, 1442, 1598, 1762, 1934, 2114, 2302, 2498, 2702, 2914, 3134, 3362, 3598, 3842, 4094, 4354, 4622, 4898, 5182, 5474, 5774, 6082, 6398, 6722, 7054, 7394, 7742, 8098, 8462, 8834, 9214
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n=0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Maple
for n from 0 to 80 do printf(`%d,`,4*n^2+8*n+2) od:
-
Mathematica
Table[4*n*(n + 2) + 2, {n, 0, 100}] (* Paolo Xausa, Aug 08 2024 *)
-
PARI
a(n) = { 4*n^2 + 8*n + 2 } \\ Harry J. Smith, Jul 08 2009
Formula
a(n) = 4*n^2 + 8*n + 2.
a(n) = 8*n + a(n-1) + 4 with n > 0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
G.f.: 2*(1 + 4*x - x^2)/(1-x)^3. - Colin Barker, Jun 28 2012
a(n) = 4*(n+1)^2 - 2 = 2*A056220(n+1). - Bruce J. Nicholson, Aug 31 2017
a(n) + a(n-1) + (n-1)^2 = (3*n + 1)^2 = A016777(n)^2. - Ezhilarasu Velayutham, May 23 2019
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 6*x + 2*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
More terms from James Sellers, Apr 14 2001
Comments