A060638 Triangle T(n,k) (0 <= k <= n) giving number of edges in the "flip graph" whose nodes are tilings of the k-dimensional zonotope constructed from n vectors.
0, 1, 0, 4, 1, 0, 12, 6, 1, 0, 32, 36, 8, 1, 0, 80, 240, 100, 10, 1, 0, 192, 1800, 2144, 264, 12, 1, 0, 448, 15120, 80360, 22624, 672, 14, 1, 0, 1024, 141120
Offset: 0
Examples
0 1 0 4 1 0 12 6 1 0 ...
References
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
Links
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
Crossrefs
Extensions
Edited by Manfred Scheucher, Mar 08 2022
Comments