A001286
Lah numbers: a(n) = (n-1)*n!/2.
Original entry on oeis.org
1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000
Offset: 2
G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ...
a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 90, ex. 4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 2..100
- Yasmin Aguillon et al., On Parking Functions and The Tower of Hanoi, arXiv:2206.00541 [math.CO], 2022.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Jeremy L. Martin, Amanda Priestley, and Gabe Udell, Statistics on L-interval parking functions, arXiv:2507.07243 [math.CO], 2025. See p. 7.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 399.
- Jennifer Elder, Pamela E. Harris, Jan Kretschmann, and J. Carlos Martínez Mori, Boolean intervals in the weak order of S_n, arXiv:2306.14734 [math.CO], 2023.
- Lucas Chaves Meyles, Pamela E. Harris, Richter Jordaan, Gordon Rojas Kirby, Sam Sehayek, and Ethan Spingarn, Unit-Interval Parking Functions and the Permutohedron, arXiv:2305.15554 [math.CO], 2023.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Sandi Klavžar, Uroš Milutinović and Ciril Petr, Hanoi graphs and some classical numbers, Expo. Math. 23 (2005), no. 4, 371-378.
- Siegfried Lehr, Jeffrey Shallit, and John Tromp, On the vector space of the automatic reals, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Bruhat Graph.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Permutation Ascent.
Cf.
A001710,
A052609,
A062119,
A075181,
A060638,
A060608,
A060570,
A060612,
A135218,
A019538,
A053495,
A051683,
A213168,
A278677,
A278678,
A278679,
A008292.
A002868 is an essentially identical sequence.
Third column (m=2) of triangle |
A111596(n, m)|: matrix product of |S1|.S2 Stirling number matrices.
-
a001286 n = sum[1..n-1] * product [1..n-1]
-- Reinhard Zumkeller, Aug 01 2011
-
[(n-1)*Factorial(n)/2: n in [2..25]]; // Vincenzo Librandi, Sep 09 2016
-
seq(sum(mul(j,j=3..n), k=2..n), n=2..21); # Zerinvary Lajos, Jun 01 2007
-
Table[Sum[n!, {i, 2, n}]/2, {n, 2, 20}] (* Zerinvary Lajos, Jul 12 2009 *)
nn=20;With[{a=Accumulate[Range[nn]],t=Range[nn]!},Times@@@Thread[{a,t}]] (* Harvey P. Dale, Jan 26 2013 *)
Table[(n - 1) n! / 2, {n, 2, 30}] (* Vincenzo Librandi, Sep 09 2016 *)
-
A001286(n):=(n-1)*n!/2$
makelist(A001286(n),n,1,30); /* Martin Ettl, Nov 03 2012 */
-
a(n)=(n-1)*n!/2 \\ Charles R Greathouse IV, Nov 20 2012
-
from _future_ import division
A001286_list = [1]
for n in range(2,100):
A001286_list.append(A001286_list[-1]*n*(n+1)//(n-1)) # Chai Wah Wu, Apr 11 2018
-
[(n-1)*factorial(n)/2 for n in range(2, 21)] # Zerinvary Lajos, May 16 2009
A060637
Triangle T(n,k) (0 <= k <= n) giving number of tilings of the k-dimensional zonotope constructed from n vectors.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 6, 2, 1, 16, 24, 8, 2, 1, 32, 120, 62, 10, 2, 1, 64, 720, 908, 148, 12, 2, 1, 128, 5040, 24698, 7686, 338, 14, 2, 1, 256, 40320, 1232944
Offset: 0
Triangle T(n,k) begins:
1;
2, 1;
4, 2, 1;
8, 6, 2, 1;
16, 24, 8, 2, 1;
32, 120, 62, 10, 2, 1;
64, 720, 908, 148, 12, 2, 1;
128, 5040, 24698, 7686, 338, 14, 2, 1;
...
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
A060570
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=2 and D varies.
Original entry on oeis.org
0, 1, 8, 100, 2144, 80360
Offset: 2
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060608
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=3 and D varies.
Original entry on oeis.org
0, 1, 10, 264, 22624
Offset: 3
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060612
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=4 and D varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060614
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=5 and D varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060616
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=6 and D varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060619
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=9 and D varies.
Original entry on oeis.org
0, 1, 22, 52224
Offset: 9
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060621
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here the codimension D-d is equal to 3 and d varies.
Original entry on oeis.org
12, 36, 100, 264, 672, 1664, 4032, 9600, 22528, 52224
Offset: 0
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
Cf.
A060595 (number of 3-tilings) for terminology. A diagonal of
A060638.
A060624
Number d-dimensional tilings of the unary zonotope Z(D,d). Here the codimension D-d is equal to 5 and d varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
Cf.
A060595 (number of 3-tilings) for terminology. A diagonal of
A060638.
Showing 1-10 of 16 results.
Comments