cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A073932 Define f(n) = n - largest nontrivial divisor of n or f(n) = n-1 if n is a prime [that is, f(n) = A060681(n)]. Form a triangle in which the n-th row contains terms n, f(n), f(f(n)), ... until a 1 is reached; sequence gives triangle read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 3, 2, 1, 7, 6, 3, 2, 1, 8, 4, 2, 1, 9, 6, 3, 2, 1, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 12, 6, 3, 2, 1, 13, 12, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 15, 10, 5, 4, 2, 1, 16, 8, 4, 2, 1, 17, 16, 8, 4, 2, 1, 18, 9, 6, 3, 2, 1, 19, 18, 9, 6, 3, 2, 1, 20, 10, 5, 4, 2, 1
Offset: 1

Views

Author

Amarnath Murthy, Aug 19 2002

Keywords

Examples

			Triangle begins:
   1;
   2, 1;
   3, 2, 1;
   4, 2, 1;
   5, 4, 2, 1;
   6, 3, 2, 1;
   7, 6, 3, 2, 1;
   8, 4, 2, 1;
   9, 6, 3, 2, 1;
  10, 5, 4, 2, 1;
		

Crossrefs

Programs

  • Maple
    j := 1:a[1] := 1:for i from 2 to 50 do n := i:j := j+1:a[j] := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:j := j+1:a[j] := n: od:od:seq(a[k],k=1..j);
  • Mathematica
    Array[If[# == 1, {1}, NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 20] // Flatten  (* Michael De Vlieger, Apr 15 2020 *)

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A323071 a(n) = gcd(n, 1+A060681(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 1, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 2, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 1, 1, 2, 1, 1, 53, 2, 5, 1, 3, 2, 59, 1, 61, 2, 1, 1, 1, 2, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79, 1, 1, 2, 83, 1, 1, 2, 1, 1, 89, 2, 1, 1, 3, 2, 1, 1, 97, 2, 1, 1, 101, 2, 103, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Differs from A055023 at n = 55, 105, 155, ..., (A323070).

Crossrefs

Programs

Formula

a(n) = gcd(n, 1+A060681(n)).
a(n) = n/A323072(n).

A323072 a(n) = n/A323071(n) = n/gcd(n, 1+A060681(n)).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 48, 49, 25, 51, 52, 1, 27, 11, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1, 37, 25, 76, 77, 39, 1, 80, 81, 41, 1, 84, 85, 43, 87, 88, 1, 45, 91, 92, 31, 47
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Differs from A055032 at n = 55, 105, 155, ..., (A323070).

Crossrefs

Programs

Formula

a(n) = n/A323071(n) = n/gcd(n, 1+A060681(n)).

A322871 Ordinal transform of A060681, where A060681(n) = n - A032742(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A060681[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    v322871 = ordinal_transform(vector(up_to,n,A060681(n)));
    A322871(n) = v322871[n];

A322873 Ordinal transform of A300721, which is Möbius transform of A060681.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 1, 4, 3, 4, 1, 4, 1, 5, 2, 5, 1, 6, 2, 6, 2, 3, 1, 7, 1, 1, 2, 7, 2, 4, 1, 8, 3, 2, 1, 5, 1, 3, 3, 9, 1, 3, 2, 8, 4, 4, 1, 6, 2, 5, 3, 10, 1, 4, 1, 11, 1, 5, 3, 4, 1, 6, 2, 7, 1, 6, 1, 12, 2, 4, 1, 7, 1, 7, 4, 13, 1, 8, 1, 14, 2, 1, 1, 5, 2, 3, 3, 15, 1, 8, 1, 8, 2, 2, 1, 9, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    A300721[n_] := Sum[MoebiusMu[n/d] A060681[d], {d, Divisors[n]}];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A300721[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    A300721(n) = sumdiv(n, d, moebius(n/d)*A060681(d));
    v322873 = ordinal_transform(vector(up_to,n,A300721(n)));
    A322873(n) = v322873[n];

A323079 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -1 if n is an odd prime, and f(n) = A060681(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 7, 3, 9, 10, 11, 3, 12, 3, 10, 13, 14, 3, 15, 16, 17, 18, 13, 3, 19, 3, 20, 21, 22, 23, 18, 3, 24, 25, 16, 3, 26, 3, 21, 27, 28, 3, 29, 30, 31, 32, 25, 3, 33, 34, 23, 35, 36, 3, 27, 3, 37, 30, 38, 39, 40, 3, 32, 41, 42, 3, 43, 3, 44, 45, 35, 46, 47, 3, 48, 49, 50, 3, 30, 51, 52, 53, 34, 3, 54, 55, 41, 56, 57, 58, 59, 3, 60, 46, 45, 3, 61, 3, 39
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A323076(i) = A323076(j),
a(i) = a(j) => A323077(i) = A323077(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323079aux(n) = if((n>2)&&isprime(n),-1,A060681(n));
    v323079 = rgs_transform(vector(up_to,n,A323079aux(n)));
    A323079(n) = v323079[n];

A300721 Möbius transform of A060681, the largest difference between consecutive divisors of n (ordered by size).

Original entry on oeis.org

0, 1, 2, 1, 4, 0, 6, 2, 4, 0, 10, 2, 12, 0, 4, 4, 16, 2, 18, 4, 6, 0, 22, 4, 16, 0, 12, 6, 28, 4, 30, 8, 10, 0, 18, 6, 36, 0, 12, 8, 40, 6, 42, 10, 16, 0, 46, 8, 36, 4, 16, 12, 52, 6, 30, 12, 18, 0, 58, 8, 60, 0, 24, 16, 36, 10, 66, 16, 22, 6, 70, 12, 72, 0, 24, 18, 50, 12, 78, 16, 36, 0, 82, 12, 48, 0, 28, 20, 88, 8, 60, 22, 30, 0, 54, 16
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Crossrefs

Cf. A000010, A008683, A060681, A300236, A300722, A322873 (ordinal transform).

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d)*A060681(d).
a(n) = A060681(n) - A300722(n).
a(n) = A000010(n) - A300236(n).

A302043 a(n) = n - A302042(n); an analog of A060681 based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 6, 4, 6, 5, 10, 6, 12, 7, 10, 8, 16, 9, 18, 10, 12, 11, 22, 12, 20, 13, 20, 14, 28, 15, 30, 16, 18, 17, 28, 18, 36, 19, 28, 20, 40, 21, 42, 22, 24, 23, 46, 24, 42, 25, 26, 26, 52, 27, 30, 28, 30, 29, 58, 30, 60, 31, 50, 32, 54, 33, 66, 34, 36, 35, 70, 36, 72, 37, 58, 38, 66, 39, 78, 40, 42, 41, 82, 42, 50, 43, 52, 44, 88, 45, 42
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Comments

An analog of A060681 based on the sieve of Eratosthenes (A083221).

Crossrefs

Programs

Formula

a(n) = n - A302042(n).

A300722 Difference between A060681 (largest difference between consecutive divisors of n as ordered by size) and its Möbius transform.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 2, 2, 5, 0, 4, 0, 7, 6, 4, 0, 7, 0, 6, 8, 11, 0, 8, 4, 13, 6, 8, 0, 11, 0, 8, 12, 17, 10, 12, 0, 19, 14, 12, 0, 15, 0, 12, 14, 23, 0, 16, 6, 21, 18, 14, 0, 21, 14, 16, 20, 29, 0, 22, 0, 31, 18, 16, 16, 23, 0, 18, 24, 29, 0, 24, 0, 37, 26, 20, 16, 27, 0, 24, 18, 41, 0, 30, 20, 43, 30, 24, 0, 37, 18, 24, 32, 47, 22, 32
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Programs

Formula

a(n) = -Sum_{d|n, dA008683(n/d)*A060681(d).
a(n) = A060681(n) - A300721(n).

A323070 Numbers k such that A055023(k) != A323071(k), where A323071(k) = gcd(k, 1+A060681(k)).

Original entry on oeis.org

55, 105, 155, 203, 253, 355, 405, 455, 497, 595, 655, 689, 705, 737, 755, 791, 955, 979, 1005, 1027, 1055, 1081, 1221, 1255, 1305, 1355, 1379, 1555, 1605, 1655, 1673, 1703, 1711, 1751, 1855, 1905, 1955, 1967, 2065, 2155, 2189, 2205, 2255, 2261, 2329, 2455, 2505, 2555, 2755, 2805, 2849, 2855, 3055
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Equivalently, numbers k for which A055032(k) != A323072(k).
Neither primes nor prime powers present?

Crossrefs

Programs

Showing 1-10 of 70 results. Next