cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A357900 Number of groups of order A060702(n) with trivial center.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 6, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 5, 2, 5, 1, 1, 5, 2, 1, 2, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 1, 4, 1, 1, 17, 1, 1, 5, 1, 1, 1, 1, 8, 1, 1, 2, 1, 11, 1, 2, 2, 5, 1, 1, 1, 2, 1, 1, 3, 1, 1, 19
Offset: 1

Views

Author

Jianing Song, Oct 19 2022

Keywords

Comments

Among the data currently known, it seems that the indices of records are n's such that A060702(n) = 1, 18, 54, 72, 162, 216, 486, 648, 972, 1458, ... with record values 1, 2, 5, 6, 17, 19, 72, 79, 109, 443, ...

Examples

			a(2) = 1 since there is a unique group of order A060702(2) = 6 with trivial center: S3.
		

Crossrefs

Programs

  • GAP
    IsNilpotentNumber := function(n) # if n > 1 is a nilpotent number, then no group of order n has trivial center; see also A056867
        local c, omega, i, j;
        c := PrimePowersInt( n );
        omega := Length(c)/2;
        for i in [1..omega] do
            for j in [1..c[2*i]] do
                if GcdInt(n, c[2*i-1]^j-1) > 1 then
                    return false;
                fi;
            od;
        od;
        return true;
    end;
    CountTrivialCenter := function(n) # returns the number of groups of order n with trivial center
        local count, i;
        if n > 1 and IsNilpotentNumber(n) then
            return 0;
        fi;
        count := 0;
        for i in [1..NumberSmallGroups(n)] do
            if(Size(Center(SmallGroup(n, i))) = 1) then
                count:=count+1;
            fi;
        od;
        return count;
    end;

A059806 Minimal size of the center of G where G is a finite group of order n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 2, 9, 1, 11, 1, 13, 1, 15, 2, 17, 1, 19, 1, 1, 1, 23, 1, 25, 1, 3, 2, 29, 1, 31, 2, 33, 1, 35, 1, 37, 1, 1, 2, 41, 1, 43, 2, 45, 1, 47, 1, 49, 1, 51, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 3, 2, 65, 1, 67, 1, 69, 1, 71, 1, 73, 1, 1, 2, 77, 1
Offset: 1

Views

Author

Noam Katz (noamkj(AT)hotmail.com), Feb 24 2001

Keywords

Comments

a(n) = n if and only if n belongs to sequence A051532 - Avi Peretz (njk(AT)netvision.net.il), Feb 27 2001
a(n) = 1 if and only if n occurs in A060702. - Eric M. Schmidt, Aug 27 2012

Examples

			a(6) = 1 because the symmetric group S_3 has trivial center.
		

Crossrefs

Programs

  • GAP
    A059806 := function(n) local min, fact, i; if (n mod 6 = 0) then return 1; fi; if (IsPrimePowerInt(n)) then fact := Factors(n); if (Length(fact) <> 2) then return fact[1]; fi; fi; min := n; for i in [1..NumberSmallGroups(n)] do min := Minimum(min, Size(Center(SmallGroup(n, i)))); if (min = 1) then break; fi; od; return min; end; # Eric M. Schmidt, Aug 27 2012

Formula

For prime p and m >= 3, a(p^m) = p. - Eric M. Schmidt, Aug 27 2012

Extensions

More terms from Eric M. Schmidt, Aug 27 2012

A340519 Smallest order of a non-abelian group with a center of order n.

Original entry on oeis.org

6, 8, 18, 16, 30, 24, 42, 32, 54, 40, 66, 48, 78, 56, 90, 64, 102, 72, 114, 80, 126, 88, 138, 96, 150, 104, 162, 112, 174, 120, 186, 128, 198, 136, 210, 144, 222, 152, 234, 160, 246, 168, 258, 176, 270, 184, 282, 192, 294, 200, 306, 208, 318, 216, 330, 224, 342, 232, 354, 240, 366, 248
Offset: 1

Views

Author

Bob Heffernan and Des MacHale, Jan 24 2021; corrected Feb 14 2021

Keywords

Comments

a(n) is 6n if n is odd and 4n if n is even. This is because the groups involved are C(n) X S3 if n is odd, where S3 is the symmetric group of order 6, and C(n/2) X D8 if n is even, where D8 is the dihedral group of order 8 and C(m) is the cyclic group of order m.
By Lagrange's Theorem a(n) is a multiple of n.

Crossrefs

Equals 2*A106833.

Programs

  • Mathematica
    Table[If[OddQ[n],6n,4n],{n,100}] (* Harvey P. Dale, Mar 03 2023 *)

A357924 Number of groups of order n with trivial center.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 5, 1, 1, 1, 1, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 6, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 5, 0, 2, 0, 5
Offset: 1

Views

Author

Jianing Song, Oct 20 2022

Keywords

Comments

A357900 is the main sequence.

Crossrefs

Cf. A357900, A060702 (indices of terms > 0).
Showing 1-4 of 4 results.