cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060735 a(1)=1, a(2)=2; thereafter, a(n) is the smallest number m not yet in the sequence such that every prime that divides a(n-1) also divides m.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 30030, 60060, 90090, 120120, 150150, 180180, 210210
Offset: 1

Views

Author

Robert G. Wilson v, Apr 23 2001

Keywords

Comments

Also, numbers k at which k / (phi(k) + 1) increases.
Except for the initial 1, this sequence is a primorial (A002110) followed by its multiples until the next primorial, then the multiples of that primorial and so on. - Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Dec 28 2006
a(1)=1, a(2)=2. For n >= 3, a(n) is the smallest integer > a(n-1) that is divisible by every prime which divides lcm(a(1), a(2), a(3), ..., a(n)). - Leroy Quet, Feb 23 2010
Numbers n for which A053589(n) = A260188(n), thus numbers with only one nonzero digit when written in primorial base A049345. - Antti Karttunen, Aug 30 2016
Lexicographically earliest infinite sequence of distinct positive numbers with property that every prime that divides a(n-1) also divides a(n). - N. J. A. Sloane, Apr 08 2022

Examples

			After a(2)=2 the next term must be even, so a(3)=4.
Then a(4) must be even so a(4) = 6.
Now a(5) must be a multiple of 2*3=6, so a(5)=12.
Then a(6)=18, a(7)=24, a(8)=30.
Now a(9) must be a multiple of 2*3*5 = 30, so a(9)=60. And so on.
		

Crossrefs

Indices of ones in A276157 and A267263.
One more than A343048.

Programs

  • Maple
    seq(seq(k*mul(ithprime(i),i=1..n-1),k=1..ithprime(n)-1),n=1..10); # Vladeta Jovovic, Apr 08 2004
    a := proc(n) option remember; if n=1 then return 1 fi; a(n-1);
    % + convert(numtheory:-factorset(%), `*`) end:
    seq(a(n), n=1..42); # after Zumkeller, Peter Luschny, Aug 30 2016
  • Mathematica
    a = 0; Do[ b = n/(EulerPhi[ n ] + 1); If[ b > a, a = b; Print[ n ] ], {n, 1, 10^6} ]
    f[n_] := Range[Prime[n + 1] - 1] Times @@ Prime@ Range@ n;  Array[f, 7, 0] // Flatten (* Robert G. Wilson v, Jul 22 2015 *)
  • PARI
    first(n)=my(v=vector(n),k=1,p=1,P=1); v[1]=1; for(i=2,n, v[i]=P*k++; if(k>p && isprime(k), p=k; P=v[i]; k=1)); v \\ Charles R Greathouse IV, Jul 22 2015
    
  • PARI
    is_A060735(n,P=1)={forprime(p=2,,n>(P*=p)||return(1);n%P&&return)} \\ M. F. Hasler, Mar 14 2017
    
  • Python
    from functools import cache;
    from sympy import primefactors, prod
    @cache
    def a(n): return 1 if n == 0 else a(n-1) + prod(primefactors(a(n-1)))
    print([a(n) for n in range(42)]) # Trey Deitch, Jun 08 2024

Formula

a(1) = 1, a(n) = a(n-1) + rad(a(n-1)) with rad=A007947, squarefree kernel. - Reinhard Zumkeller, Apr 10 2006
a(A101301(n)+1) = A002110(n). - Enrique Pérez Herrero, Jun 10 2012
a(n) = 1 + A343048(n). - Antti Karttunen, Nov 14 2024

Extensions

Definition corrected by Franklin T. Adams-Watters, Apr 16 2009
Simpler definition, comments, examples from N. J. A. Sloane, Apr 08 2022