A060741 Number of divisors of 2n which are also differences between consecutive divisors of 2n (ordered by size).
1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 5, 2, 4, 4, 4, 2, 5, 3, 4, 4, 4, 2, 7, 2, 6, 4, 4, 3, 6, 2, 4, 4, 5, 2, 5, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 7, 4, 4, 4, 4, 2, 9, 2, 4, 5, 7, 4, 5, 2, 6, 4, 6, 2, 8, 2, 4, 6, 6, 2, 6, 2, 6, 5, 4, 2, 8, 4, 4, 4, 6, 2, 9, 2, 6, 4, 4, 4, 7, 2, 6, 6, 6, 2, 6, 2, 6, 8
Offset: 1
Keywords
Examples
For n=35, 2n=70; divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; intersection={1,2,35}, so a(35)=3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
a[n_ ] := Length[Intersection[Drop[d=Divisors[2n], 1]-Drop[d, -1], d]] Table[Length[Intersection[Divisors[2n],Differences[Divisors[2n]]]],{n,110}] (* Harvey P. Dale, Nov 22 2015 *)
-
PARI
A060764(n) = { my(divs=divisors(n), diffs=vecsort(vector(#divs-1,i,divs[i+1]-divs[i]), ,8), c=#divs); for(i=1,#diffs,if(!(n%diffs[i]),c--)); (c); }; A060741(n) = (numdiv(2*n) - A060764(2*n)); \\ Antti Karttunen, Sep 21 2018
Extensions
Edited by Dean Hickerson, Jan 22 2002
Comments