A060742 Number of divisors of n! which are also differences between consecutive divisors of n! (ordered by size).
0, 0, 1, 2, 4, 9, 15, 27, 41, 68, 111, 218, 328, 624, 929, 1518, 2016, 3689, 4965, 9252, 13177, 20016, 30697, 56749, 69434, 94242, 149558, 190292, 258370, 492924, 615063, 1149403, 1325124, 1841343, 2737190, 3592273, 4193855, 8216492, 12668800, 17654339, 20368544
Offset: 0
Keywords
Examples
For n = 5, n! = 120; divisors = {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}; differences = {1,1,1,1,1,2,2,2,3,5,4,6,10,20,60}; intersection = {1,2,3,4,5,6,10,20,60}, so a(5) = 9.
Links
- Daniel Berend and J. E. Harmse, Gaps between consecutive divisors of factorials, Ann. Inst. Fourier, 43 (3) (1993), 569-583.
Programs
-
Maple
f:= proc(n) local D,L; D:= numtheory:-divisors(n!); L:= sort(convert(D,list)); nops(convert(L[2..-1]-L[1..-2],set) intersect D); end proc: map(f, [$0..34]); # Robert Israel, Jul 03 2017
-
Mathematica
a[n_ ] := Length[Intersection[Drop[d=Divisors[n! ], 1]-Drop[d, -1], d]]
-
PARI
a(n) = {my(v = List(), f = n!, d1 = 1, del); fordiv(f, d, if(d > 1, del = d - d1; if(!(f % del), listput(v, del)); d1 = d)); #Set(v);} \\ Amiram Eldar, Jun 15 2024
Formula
a(n) = A060741(n!/2) for n >= 2. - Amiram Eldar, Jun 15 2024
Extensions
Edited by Dean Hickerson, Jan 22 2002
One more term from Robert G. Wilson v, Jan 29 2002
a(33)-a(35) from Robert Israel, Jul 03 2017
a(36)-a(40) from Amiram Eldar, Jun 15 2024
Comments