cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060741 Number of divisors of 2n which are also differences between consecutive divisors of 2n (ordered by size).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 5, 2, 4, 4, 4, 2, 5, 3, 4, 4, 4, 2, 7, 2, 6, 4, 4, 3, 6, 2, 4, 4, 5, 2, 5, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 7, 4, 4, 4, 4, 2, 9, 2, 4, 5, 7, 4, 5, 2, 6, 4, 6, 2, 8, 2, 4, 6, 6, 2, 6, 2, 6, 5, 4, 2, 8, 4, 4, 4, 6, 2, 9, 2, 6, 4, 4, 4, 7, 2, 6, 6, 6, 2, 6, 2, 6, 8
Offset: 1

Views

Author

Labos Elemer, Apr 23 2001

Keywords

Comments

For odd numbers the intersection is empty.

Examples

			For n=35, 2n=70; divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; intersection={1,2,35}, so a(35)=3.
		

Crossrefs

Programs

  • Mathematica
    a[n_ ] := Length[Intersection[Drop[d=Divisors[2n], 1]-Drop[d, -1], d]]
    Table[Length[Intersection[Divisors[2n],Differences[Divisors[2n]]]],{n,110}] (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    A060764(n) = { my(divs=divisors(n), diffs=vecsort(vector(#divs-1,i,divs[i+1]-divs[i]), ,8), c=#divs); for(i=1,#diffs,if(!(n%diffs[i]),c--)); (c); };
    A060741(n) = (numdiv(2*n) - A060764(2*n)); \\ Antti Karttunen, Sep 21 2018

Formula

a(n) = A000005(2n) - A060764(2n).

Extensions

Edited by Dean Hickerson, Jan 22 2002

A060738 Number of distinct differences between consecutive divisors (ordered by increasing magnitude) of n! which are not also divisors of n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 12, 51, 92, 225, 340, 573, 1325, 2334, 6024, 8724, 13130, 21601, 46169, 67213, 106427, 178014, 242104, 338499, 727248, 988029, 1924615, 2426894, 3592164, 5817845, 8360196, 10396523, 21941765, 33649653, 48804040, 61413482, 124029358
Offset: 0

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			For n up to 7 all divisor differences of n! are also divisors of n!.
For n = 8, there are 3 divisor differences of 8! = 40320 which are not divisors of 8!, namely 27, 54 and 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_ ] := Length[Complement[Drop[d=Divisors[n! ], 1]-Drop[d, -1], d]]
  • PARI
    a(n) = {my(v = List(), f = n!, d1 = 1, del); fordiv(f, d, if(d > 1, del = d - d1; if(f % del, listput(v, del)); d1 = d)); #Set(v);} \\ Amiram Eldar, Jun 15 2024

Formula

a(n) = A060763(n!).

Extensions

Edited by Dean Hickerson, Jan 22 2002
More terms from Sean A. Irvine, Dec 21 2022
a(41) from Amiram Eldar, Jun 15 2024

A060737 Number of distinct differences between consecutive divisors of n! (ordered by size).

Original entry on oeis.org

0, 0, 1, 2, 4, 9, 15, 27, 44, 72, 116, 230, 379, 716, 1154, 1858, 2589, 5014, 7299, 15276, 21901, 33146, 52298, 102918, 136647, 200669, 327572, 432396, 596869, 1220172, 1603092, 3074018, 3752018, 5433507, 8555035, 11952469, 14590378, 30158257, 46318453, 66458379
Offset: 0

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			For n = 4, n! = 24; divisors = {1,2,3,4,6,8,12,24}; differences = {1,1,1,2,2,4,12}, distinct differences = {1,2,4,12}, so a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_ ] := Length[Union[Drop[d=Divisors[n! ], 1]-Drop[d, -1]]]
    Table[Length[Union[Differences[Divisors[n!]]]],{n,0,40}] (* Harvey P. Dale, Nov 22 2021 *)
  • PARI
    a(n) = {my(v = List(), d1 = 1); fordiv(n!, d, if(d > 1, listput(v, d-d1); d1 = d)); #Set(v);} \\ Amiram Eldar, Jun 15 2024

Formula

a(n) = A060682(n!).

Extensions

Edited by Dean Hickerson, Jan 22 2002
More terms from Ryan Propper, Mar 22 2006
a(37)-a(39) from Amiram Eldar, Jun 15 2024

A060654 a(n) = gcd(n, A060766(n)).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 60, 1, 31, 21, 32, 13, 33, 1, 34, 23, 70, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40, 27, 41
Offset: 2

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			If n is prime p, then A060766(p) = p-1 and lcm(p, p-1) = 1. If n=2k then a(2k)=k or as an "anomaly", a(2k)=2k.
At n=30, D={1, 2, 3, 5, 6, 10, 15, 30}, dD={1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD)=60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n.
At n=36, D={1, 2, 3, 4, 6, 9, 12, 18, 36}, dD={1, 1, 1, 2, 3, 3, 6, 18}={1, 2, 3, 6, 18}, lcm(dD)=18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2.
		

Crossrefs

Programs

  • Maple
    A060766:= proc(n) local F; F:= sort(convert(numtheory:-divisors(n),list));
       ilcm(op(F[2..-1] - F[1..-2])) end proc:
    seq(igcd(n,A060766(n)),n=2..100); # Robert Israel, Dec 20 2015
  • Mathematica
    Table[GCD[n, LCM @@ Differences@ Divisors@ n], {n, 2, 82}] (* Michael De Vlieger, Dec 20 2015 *)

Formula

a(n) = gcd(n, lcm(dd(n))), where dd(n) is the first difference of divisors (ordered by size).

A060695 a(n) = gcd(2n, A060766(2n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 30, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 60, 31, 32, 33, 34, 70, 36, 37, 38, 39, 40, 41, 42, 43, 44, 90, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 126, 64, 65, 66, 67, 68, 69, 140, 71
Offset: 1

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			n = 30: D = {1, 2, 3, 5, 6, 10, 15, 30}, dD = {1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD) = 60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n
n = 36: D = {1, 2, 3, 4, 6, 9, 12, 18, 36}, dD = {1, 1, 1, 2, 3, 3, 6, 18} = {1, 2, 3, 6, 18}, lcm(dD) = 18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[2 n, LCM @@ Differences@ Divisors[2 n]], {n, 71}] (* Michael De Vlieger, Dec 20 2015 *)
  • PARI
    a(n) = my(d=divisors(2*n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(2*n, lcm(dd)); \\ Michel Marcus, Mar 22 2020

Formula

a(n) = a(2k) is either n = 2k or n/2 = k. a(n) = n/2 seems regular, a(n) = n seems "anomalous".

A060700 "Anomalous" numbers k such that for even numbers 2k, gcd(2k, lcm(dd(2k)))=2k and not k, where dd(2k) is the first difference set of divisors of 2k.

Original entry on oeis.org

15, 30, 35, 45, 63, 70, 75, 77, 91, 99, 105, 117, 126, 135, 140, 143, 150, 153, 154, 165, 175, 182, 187, 189, 195, 198, 209, 221, 225, 231, 234, 245, 247, 252, 255, 273, 280, 285, 286, 297, 299, 306, 308, 315, 323, 325, 330, 345, 350, 351, 357, 364, 374, 375
Offset: 1

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			63 is here because for 126 = 2*63, lcm(dd(126)) = lcm(1, 1, 3, 1, 2, 5, 4, 3, 21, 21, 63) = 1260, so gcd(126, lcm(dd(126))) = gcd(126, 1260) = 126.
		

Crossrefs

Programs

  • PARI
    f(n) = {my(d = divisors(n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(n, lcm(dd));}
    isok(n) = (f(2*n) == 2*n); \\ Michel Marcus, Mar 29 2018
Showing 1-6 of 6 results.